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Introduction
Batch Normalization



The story 

of 

Scaredy Cat



Baby kitten for Christmas ! Yey !

Young, Naïve, Innocent, Scared of everything

= Not Trained



Task – Train it to eat





First step in Training Scaredy Cat to EatTrain it to “Recognize” a Pizza
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Training Data with distribution of the 
features is different 



The Pizza Super Duper Man



The Pizza Super Duper Man



The Pizza Super Duper Man - Normalizes

Batch 
Normalization 

Layer



Happily Ever After



Internal Covariate Shift



Covariate Shift

• Covariate – The Features of the Input Data
• Covariate Shift - Formally, is defined as a change in the 

distribution of a function’s domain.
• Feature space of Target is drastically different than Source
• Training Data with distribution of the features is different.
• Informally, when input feature change, and algorithm can’t 

deal with it, thus slowing the training.

Let’s say you have a goal to reach, which is easier, a fixed goal vs 
a goal that keeps moving about? It is clear that a static goal is 
much easier to reach than a dynamic goal.
Each layer in a neural net has a simple goal, to model the input 



Why Covariate Shift slows learning ?
• IID – Independent and identically distributed - Each random 

variable has the same probability distribution as the others 
and all are mutually independent.

• Between the source (S) and target (T) given the same 
observation X = x conditional distributions of Y is same in 
both domains.

Ps(Y|X = x) = Pt(Y|X = x) ∀ x ∈ X
In real world – In the wild

Ps(Y|X = x) ≠ Pt(Y|X = x)



Why Covariate Shift slows learning ?
• To analyze the issue – We consider a Parametric Model 

Family {P(Y|X, θ)}θ∉Ɵ

• We select a model {P(Y|X, θ*)}, which minimizes the 
expected classification error.

• If none of the models in the model family can exactly match 
the true relation between X and Y => there does not exist 
any θ∉Ɵ such that P(Y|X = x, θ) = P(Y|X = x) ∀ x∈X => We 
call this a misspecified model family.

• With a misspecified model family, the optimal model we 
select depends on P(X) and if Ps(X) ≠ Pt(X) then the optimal 
model for the target domain will differ from that for the 
source domain



Why Covariate Shift slows learning ?
• The intuitive is that the optimal model performs better in dense 

regions of   than in sparse regions of  , because the dense regions 
dominate the average classification error, which is what we want to 
minimize. If the dense regions of   are different in the source and 
target then the optimal model for the source domain domain will no 
longer be optimal for the target domain.

• We re-weigh the 

• We therefore re-weight each training instance with



Why Covariate Shift slows learning ?

• Improving predictive inference under covariate shift by 
weighting the log-likelihood function - Hidetoshi 
Shimodaira



Internal Covariate Shift
• Deep learning – Is parameterized in a hierarchical fashion
• The first layere (Input Layer) looksa at the souce and the output of 

the first layer feeds the second layer, the second feeds the third, and 
so on.

• The distribution of the input is important - Because we are actually 
learning a MODEL from the training data and NOT the right model.

• Internal Covariate Shift - Small changes to the network get amplified 
down the network which leads to change in the input distribution to 
internal layers of the deep network.



Internal Covariate Shift
• Internal covariate shift refers to covariate shift occurring within a 

neural network, i.e. going from (say) layer 2 to layer 3. This happens 
because, as the network learns and the weights are updated, the 
distribution of outputs of a specific layer in the network changes. 
This forces the higher layers to adapt to that drift, which slows down 
learning.

Small Change

Gets Amplified

Large Change



Internal Covariate Shift

• Where F1 and F2 are arbitrary transformations, and the parameters Ɵ1, Ɵ2 are to be 
learned so as to minimize the loss ℓ.

• Learning Ɵ2 can be viewed as if the inputs x = F1(u, Ɵ1) are fed into the sub-network

• (for batch size m and learning rate α) is exactly equivalent to that for a stand-alone network F2 
with input x. 

Internal Covariate Shift applied to its parts, such as a sub-network or a layer.
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Batch Normalization – Is a process  normalize each scalar feature independently, by 
making it have the mean of zero and the variance of 1 and then scale and shift the 
normalized value for each training mini-batch thus reducing internal covariate shift 
fixing the distribution of the layer inputs x as the training progresses.

Using mini-batches of examples, as opposed to one example at a time, is helpful in 
several ways. 

• First, the gradient of the loss over a mini-batch is an estimate of the gradient over 
the training set, whose quality improves as the batch size increases. 

• Second, computation over a batch can be much more efficient than m computations 
for individual examples, due to the parallelism afforded by the modern computing 
platforms.

Batch Normalization



Batch Normalizing Transform
To remedy internal covariate shift, the solution proposed in the paper is to 
normalize each batch by both mean and variance



Batch Normalizing Transform
Let us say that the layer we want to normalize has d dimensions x = (x1, ... 
xd). Then, we can normalize the kth dimension as follows:

• the parameters γ and β are to be learned, but it should be noted that 
the BN transform does not independently process the activation in each 
training example.

• Rather, BNγ,β(x) depends both on the training example and the other 
examples in the mini-batch. The scaled and shifted values y are passed 
to other network layers.



Batch Normalizing Transform
During training we need to backpropagate the gradient of loss ℓ through 
this transformation, as well as compute the gradients with respect to the 
parameters of the BN transform.



Batch Normalizing Transform
To remedy internal covariate shift, the solution proposed in the 
paper is to normalize each batch by both mean and variance



Computational Graph of Batch Normalization



Backpropagation



Chain Rule in Backpropagation



Computational Graph of Batch Normalization

STEP 9



STEP 9 – Summation gate



Computational Graph of Batch Normalization

STEP 9STEP 8



STEP 8 – First Multiplication gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7



STEP 7 – Second Multiplication gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6



STEP 6 – Inverse gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5



STEP 5 – Square root gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4



STEP 4 – Mean gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3



STEP 3 – Square gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2



STEP 2 – Subtraction gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2

STEP 1



STEP 1 – Mean gate



Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2

STEP 1

STEP 0



STEP 0 – Input



Real World
Applications



Advantages of Batch Normalization

• Increased learning rate

• Remove Dropout

• Increased accuracy

• Allow use of saturating nonlinearities



Disadvantages of Batch Normalization

• Difficult to estimate mean and standard deviation of input during 
testing

• Cannot use batch size of 1 during training

• Computational overhead during training



Practical Demo

CIFAR-10
• 4 convolutional layers.
• ReLu activation function.
• Mini-batch size to be 32.
• Batch Normalization added 

before each activation.
• 50,000 train samples
• 10,00 test samples



Learning curve on CIFAR-10



Related Work

• Recurrent Batch Normalization - Batch-normalize the hidden-to-
hidden transition, thereby reducing internal covariate shift between 
time steps.

• Weight Normalization: A Simple Reparameterization to Accelerate 
Training of Deep Neural Networks 

• Normalization Propagation: A Parametric Technique for Removing 
Internal Covariate Shift in Deep Networks

• Layer Normalization
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