
Batch Normalization
Accelerating Deep Network Training
by
Reducing Internal Covariate Shift

Amit Patel
Sambit Pradhan

• Introduction
• Internal Covariate Shift
• Batch Normalization
• Computational Graph of Batch

Normalization
• Real World Application
• Practical Demo
• Discussion

Introduction
Batch Normalization

The story

of

Scaredy Cat

Baby kitten for Christmas ! Yey !

Young, Naïve, Innocent, Scared of everything

= Not Trained

Task – Train it to eat

First step in Training Scaredy Cat to EatTrain it to “Recognize” a Pizza

Features

Training Data Model Output

Every Day

One Special Day

Features

Training Data with distribution of the
features is different

The Pizza Super Duper Man

The Pizza Super Duper Man

The Pizza Super Duper Man - Normalizes

Batch
Normalization

Layer

Happily Ever After

Internal Covariate Shift

Covariate Shift

• Covariate – The Features of the Input Data
• Covariate Shift - Formally, is defined as a change in the

distribution of a function’s domain.
• Feature space of Target is drastically different than Source
• Training Data with distribution of the features is different.
• Informally, when input feature change, and algorithm can’t

deal with it, thus slowing the training.

Let’s say you have a goal to reach, which is easier, a fixed goal vs
a goal that keeps moving about? It is clear that a static goal is
much easier to reach than a dynamic goal.
Each layer in a neural net has a simple goal, to model the input

Why Covariate Shift slows learning ?
• IID – Independent and identically distributed - Each random

variable has the same probability distribution as the others
and all are mutually independent.

• Between the source (S) and target (T) given the same
observation X = x conditional distributions of Y is same in
both domains.

Ps(Y|X = x) = Pt(Y|X = x) ∀ x ∈ X
In real world – In the wild

Ps(Y|X = x) ≠ Pt(Y|X = x)

Why Covariate Shift slows learning ?
• To analyze the issue – We consider a Parametric Model

Family {P(Y|X, θ)}θ∉Ɵ

• We select a model {P(Y|X, θ*)}, which minimizes the
expected classification error.

• If none of the models in the model family can exactly match
the true relation between X and Y => there does not exist
any θ∉Ɵ such that P(Y|X = x, θ) = P(Y|X = x) ∀ x∈X => We
call this a misspecified model family.

• With a misspecified model family, the optimal model we
select depends on P(X) and if Ps(X) ≠ Pt(X) then the optimal
model for the target domain will differ from that for the
source domain

Why Covariate Shift slows learning ?
• The intuitive is that the optimal model performs better in dense

regions of than in sparse regions of , because the dense regions
dominate the average classification error, which is what we want to
minimize. If the dense regions of are different in the source and
target then the optimal model for the source domain domain will no
longer be optimal for the target domain.

• We re-weigh the

• We therefore re-weight each training instance with

Why Covariate Shift slows learning ?

• Improving predictive inference under covariate shift by
weighting the log-likelihood function - Hidetoshi
Shimodaira

Internal Covariate Shift
• Deep learning – Is parameterized in a hierarchical fashion
• The first layere (Input Layer) looksa at the souce and the output of

the first layer feeds the second layer, the second feeds the third, and
so on.

• The distribution of the input is important - Because we are actually
learning a MODEL from the training data and NOT the right model.

• Internal Covariate Shift - Small changes to the network get amplified
down the network which leads to change in the input distribution to
internal layers of the deep network.

Internal Covariate Shift
• Internal covariate shift refers to covariate shift occurring within a

neural network, i.e. going from (say) layer 2 to layer 3. This happens
because, as the network learns and the weights are updated, the
distribution of outputs of a specific layer in the network changes.
This forces the higher layers to adapt to that drift, which slows down
learning.

Small Change

Gets Amplified

Large Change

Internal Covariate Shift

• Where F1 and F2 are arbitrary transformations, and the parameters Ɵ1, Ɵ2 are to be
learned so as to minimize the loss ℓ.

• Learning Ɵ2 can be viewed as if the inputs x = F1(u, Ɵ1) are fed into the sub-network

• (for batch size m and learning rate α) is exactly equivalent to that for a stand-alone network F2
with input x.

Internal Covariate Shift applied to its parts, such as a sub-network or a layer.

Batch Normalization
Accelerating Deep Network Training
by
Reducing Internal Covariate Shift

Batch Normalization – Is a process normalize each scalar feature independently, by
making it have the mean of zero and the variance of 1 and then scale and shift the
normalized value for each training mini-batch thus reducing internal covariate shift
fixing the distribution of the layer inputs x as the training progresses.

Using mini-batches of examples, as opposed to one example at a time, is helpful in
several ways.

• First, the gradient of the loss over a mini-batch is an estimate of the gradient over
the training set, whose quality improves as the batch size increases.

• Second, computation over a batch can be much more efficient than m computations
for individual examples, due to the parallelism afforded by the modern computing
platforms.

Batch Normalization

Batch Normalizing Transform
To remedy internal covariate shift, the solution proposed in the paper is to
normalize each batch by both mean and variance

Batch Normalizing Transform
Let us say that the layer we want to normalize has d dimensions x = (x1, ...
xd). Then, we can normalize the kth dimension as follows:

• the parameters γ and β are to be learned, but it should be noted that
the BN transform does not independently process the activation in each
training example.

• Rather, BNγ,β(x) depends both on the training example and the other
examples in the mini-batch. The scaled and shifted values y are passed
to other network layers.

Batch Normalizing Transform
During training we need to backpropagate the gradient of loss ℓ through
this transformation, as well as compute the gradients with respect to the
parameters of the BN transform.

Batch Normalizing Transform
To remedy internal covariate shift, the solution proposed in the
paper is to normalize each batch by both mean and variance

Computational Graph of Batch Normalization

Backpropagation

Chain Rule in Backpropagation

Computational Graph of Batch Normalization

STEP 9

STEP 9 – Summation gate

Computational Graph of Batch Normalization

STEP 9STEP 8

STEP 8 – First Multiplication gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 7 – Second Multiplication gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6

STEP 6 – Inverse gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5

STEP 5 – Square root gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4

STEP 4 – Mean gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 3 – Square gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2

STEP 2 – Subtraction gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2

STEP 1

STEP 1 – Mean gate

Computational Graph of Batch Normalization

STEP 9STEP 8STEP 7

STEP 6STEP 5STEP 4STEP 3

STEP 2

STEP 1

STEP 0

STEP 0 – Input

Real World
Applications

Advantages of Batch Normalization

• Increased learning rate

• Remove Dropout

• Increased accuracy

• Allow use of saturating nonlinearities

Disadvantages of Batch Normalization

• Difficult to estimate mean and standard deviation of input during
testing

• Cannot use batch size of 1 during training

• Computational overhead during training

Practical Demo

CIFAR-10
• 4 convolutional layers.
• ReLu activation function.
• Mini-batch size to be 32.
• Batch Normalization added

before each activation.
• 50,000 train samples
• 10,00 test samples

Learning curve on CIFAR-10

Related Work

• Recurrent Batch Normalization - Batch-normalize the hidden-to-
hidden transition, thereby reducing internal covariate shift between
time steps.

• Weight Normalization: A Simple Reparameterization to Accelerate
Training of Deep Neural Networks

• Normalization Propagation: A Parametric Technique for Removing
Internal Covariate Shift in Deep Networks

• Layer Normalization

Citations

• http://adsabs.harvard.edu/cgi-bin/nph-
ref_query?bibcode=2015arXiv150203167I&refs=CITATIONS&db_key=PRE

