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Framework to do visualizations

Image space (pre-images) Representation space



Framework to invert representations

Image Space Representation space
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Contributions

e Propose a general method to invert representations, including SIFT,
HOG and CNNS

e Inverting representations method performs better for DSIFT and HOG
compared to recent alternatives.

e Apply inversion technique to the analysis of deep CNNs, showing that
CNN gradually builds an increasing amount of invariance, layer by layer

e Study locality of information stored in the representations by
reconstructing image from selected groups of neurons, either spatially
or by channel.
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Related Work #1 SIFT and Dense-SIFT

Reconstruct an image given keypoint of SIFT based on a huge database

—  R; = {vi,x;, 54,03, A;}

Appedrdnce uescripLor vi,

Coordinates of region’s center Xi;
Scale Si;

Dominant gradient orientation Oi;
Region support information Ai.

Image from: P. Weinzaepfel, H. J’egou, and P. P erez. Reconstructing an image from its local descriptors. In CVPR, 2011.
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Related Wor 1 Dense—ST

~ e Lt LR

Figure 4. From left to right: the original picture and the reconstruction before and after completion of uncovered regions.

1. For each query appearance descriptor v;, search its 2. Seamlessly stitch all patches p;, ¢ = 1---n, together
nearest neighbor in the descriptor database to obtain a partial reconstruction with support S =
U1 Si C € (see details below) .

j-=arg max |vi—vj|a, (1) - 2
je{1---m} 3. Complete remaining empty zone S = 2\ .S by smooth

: . R i interpolation. as shown in Figure 4 (see details below).
and recover the corresponding elliptic image patch

q; = Li(+)(S;+)- (2)
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Related Work #1 HOG and HOGgles

HOG Feature HOG Basis
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Related Works #2

e \Visualizing and understanding convolutional networks(DeConvNet).
In ECCV, 2014.

o Backtrack the network computations to identify which image patches are responsible for
certain neural activations

e Visualising image classification models and saliency maps.

ICLR, 2014

o Reconstruction via maximizing class-neuron scores
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. Visualizing and understanding convolutional networks(DeConvNet).

1. Feed image into net

2. Pick a layer, set the gradient there to be all zero except for one 1 for
some neuron of interest “Guided

3. Backprop to image: backpropagation:”
only propagate
positive gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| 9'1\135 =




[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass 1o I b) 11als o[

o image - —{i-B > [315]" ! s ST el

tu 4 4

Baciounsd pase Fea remap: EB DEI

iar::mstructed‘ 5 LA ' 2o NEE

ge K 0]2 Backward pass:

| backpropagation |6 d0J0] < |61 3}%

———————————————————— F o|a|3 2|a|a
€)  activation: S = relu(f!) = max(f!,0) ;

d |
backpropagation: R = (f > 0). R'*", where B :‘U"“"t

|
: Backward pass 2 B -1
- ve R =(f>0). - R ;i [ R
backpropagation: ' ' ' i backpropagation 2]1]23

* Original slides borrowed from Andrej Karpathy
and Li Fel-Fel, Stanford cs231n comp150d em




Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

2. Visualize the
Data gradient:

(note that the gradient on
data has three channels.
Here they visualize M, s.t.:

$,7,C) |
(at each pixel take abs val, and max
over channels)

M;; = max, |wy

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| f_:-’fTUftS

26

18



Outline

Introduction
Contributions
Related Works
Inverting Method
Representation
Experiments
Demo

19



Inverting Method

=¢0

Representation

Reconstructed image x*

— @(X7)
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Inverting Method

To solve equation

x* = argmin £(®(x),Py) + AR(x)

xERH W x

Loss: compare image representation
and target one
Given:
o Representation function ® : RZ*WxC _, Rd
o Representation: ¢, = ®(xg)
Find: x* that minimizes the objective

R: regulariser to capture a
natural image prior

21



Inverting method - loss

Loss Function: Euclidean distance £ ®(x), ®p) = || ®(x) — Dl
i : 4
Objective equation: x* = argmin #(®(x), ®p) + AR(x)

xERHﬁbeC

Code:

ymbda x: Eum{ [[Gﬂﬂ_fﬂB{x] h]

: sum( ((cnn_£fc3(x) h) ) regularizer(x) ) )

Code: http://cesarsalgado.com/ipython_notes_on_understanding_deep_image_representations_by_inverting_them/



Inverting method - regularisers

Regularisers: a-norm image prior

o a-norm (a = 6) (X is vectorised and mean-subtracted image) Ra(x) = ||Ix||2,

-

def six norm(x):

return sum(x

o Example:
m Assume image x with shape(H,W,C) H=2, W =2, C = 3(RGB)

=»> ¥ = np.random.randn(2,2,3)

= XK

array([[[ ©.47451484, 8.205B84752, 2.03430044],
[-2.14@03253, 0.6B461235, @.91091761]1],

[[ 1.0614070@E, ©.28991584, -0.30025526],
[-9.34013064, -0.28461196, ©.84689234]]])

|| Then a-norm Wi" be: i np_ﬂ,um{x**ﬁ]
169.6B100T7EATZ20023
=

Code: http://cesarsalgado.com/ipython_notes_on_understanding_deep_image_representations_by_inverting_them/ 23



Inverting method - regularizes

Regularisers: TV-norm image prior

b2t

o TV(total variation) Rys(x) = Z ((-73-5,3'+1 — Tri,:r')z + (@iy1,5 — mt'j]z)
i,j
def total variation(x):
beta
result

xrange(x shape[(]):

or xrange(x shape[1]):

result ( (x[i,3 11 x[4,3]) (x[i 1,31 x[1,3]) ) (beta 2)
eturn result

e Example: total_variation(x) will be with shape(3,)

=== totalix)

array([ 7.1850@788, @.15117329, 6.71282357]) 24



Inverting method - regularizes

Objective function: argmin [|8(x) — ®o|® + ARa(X) + AysRys(x)
Regulariser defined as sum of both subterms

Code:

def regularizer(x):
multl
mult2

return multl six norm(x) mult2 total wvariation(x)

Example: regularizer result will be with shape(3,)

=»> regularizer(x)

(3,)

array([ 4.41173195e+18, 4.41173194e+18, 4.41173195e+18])
|
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Inverting method - loss and regulariser

e Balancing loss and regularizer
|P(ox) — P |§f||‘I*n |§ + AaRa(X) + AysRys(x)

Normalized Loss

o: average Euclidean norm of natural images in a training set
B =128 ox €[-B,B]

Ra(x) & HWB/o® Ao = 0%/(HWB®)

A\va ~ o [(HW(aB)?) (2.16 * 1078)

26



Inverting method - Optimisation

e Gradient Descent(GD)

e GD extensions
o Momentum

i1  mps — e VE(x), X1 € Xp + [t

s N\

Weightedavg | @ rats E(x) = £(®(x), ®p) + AR(x)

o Computing derivatives
m  CNNs : backpropagation
m  CNN-HOG and CNN-DSIFT: same as CNNs

27
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Representations - CNN-A(Caffe-Alex) deep networks

e CNN-A structure

deran  detie
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luyer l | . 3 4 b (4] ) K L, It i1 13 13 I4 15 6 17 18 19 20 |
name  |convl relul mpooll norml conv2 relud mpool norm2 convd relud comvd relud convd relud mpool5 fob relut €7 relu? 1ol |
Iype env rmelu mpool mem o cnv o relu mpool nrm o eov o relu cov relu o cnv relu mpool cov relu env  relu  cnv

channels| 96 96 96 96 256 256 256 256 384 3R4 384 384 256 256 256 4096 4096 4096 4096 1000
[rec. field| 11 1119 19 51 51 61 67 99 99 131 131 163 163 195 355 345 355 355 355 |

Table 2. CNN-A structure. The table specifies the structure of CNN-A along with receptive field size of each neuron, The fillers in layers
from 16 to 20 operate as “fully connected”: given the standard image input size of 227 x 227 pixels, their support covers the whole image.

F i " P i i : f ; i 29
Note also that their receptive field is larger than 227 pixels, but can be contained in the image domain due to padding.



Representations - CNN-DSIFT and CNN-HOG

How DSIFT and HOG implemented in CNNs:

Step1: Computing and binning image gradients
Step2: Pooling binned gradients into cell histograms
Step 3: Grouping cells into blocks (CNN layers)

Step 4: Normalising the blocks (CNN layers)

30
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Experiments with shallow representation (HOG & SIFT)

Quantitative Analysis

descriptors HOG HOG | HOGb | DSIFT
method HOGgle our our our
error (%) 66.20  28.10 | 10.67 | 10.89
+13.7 TT.Y Th.2 +7.5
Error:  [®(x*) — ®(x:)[2/Ne

Qualitative Analysis

32



Experiments with shallow representation (HOG & SIFT)

Comparison HOG and HOGIle

L
() HOGgle [ 1] i

descriptors éF[DG\ HOG || HOGb | DSIFT

method 0Ggle| | our our our
error (%) EE.E{} 25.10 || 10.67 | 10.89
+13.7 =7.9 5.2 7.5

Table 1. Average reconstruction error of different representation
inversion methods, applied to HOG and DSIFT. HOGb denotes
HOG with bilinear orientation assignments. The standard devia-
tion shown is the standard deviation of the error and not the stan-
dard deviation of the mean error.

33




Experiments with shallow representation (HOG & SIFT)

Comparison HOG , DSIFT(quantative)

descriptors HOGb | DSIFT
method H(}Ggle our our our
error (%) 66.20 28.10/| 10.67 | 10.89

+13.7 +7.5 +5.2 \ +7.5 /

Table 1. Average reconstruction error of different representation
inversion methods, applied to HOG and DSIFT. HOGb denotes
HOG with bilinear orientation assignments. The standard devia-
tion shown is the standard deviation of the error and not the stan-
dard deviation of the mean error.




Experiments with deep representation (CNN-A)

e Train Data: 1.2M images of the ImageNet ILSVRC 2012
e Validation Data: 100 ILSVRC validation images

e )\, =216x10°

e Increasing Av¢ ten-folds, starting from 0.5



Experiments with deep representation (CNN-A)

Quantitative Analysis

Avs|l 1 2 3 4 3 6 7
convl relul pooll norml conv2 relu2 pool2 norm2 conv3 relu3 conv4 relu4 conv5 reluS poolS fc6 relu6 fc7 relu7 fc8

13 14 15 16 17 18 19 20

A1 |{10.0 11.3 21.9 203 12.4 12.9|15.5 159 14.5 lﬁ:J 149 138 12.6 15.6 16.6 12415812810553
4+ 5.0 +5.5 =0.2 5.0 +J.1 =5.3 4.7 4.7 = 5. +3.8 +5.1 +4.86 +3.5 +4.5 +6.4 1.8 £1.1
Az || 20.2 224 30.3 28.2 20.0 17.4 18.2 18.4 144151 133140 15.4 13.9 15.5 14213?15410859
+8.3 =it.d =13.6 +7.6 4.8 =b.0 T30 = 8 F =o' +3.2 4.0 +3.7 +3.1 +10.3 4+1.4 +0.9
Az || 40.8 45.2 54.1 48.1 39.7 32.8 32.7 324 25.6 2&9 23.3 23.9 25.7 20.1 19.0 18.618.717.115.58.5
+17.0 £18.T £32.7 +11.8 8.1 =TT 8.0 ET. =5.6 5.3 1 4.6 +4.3 4.3 $4.3 +4.0 +3.8 434 +2.1 41.3

Table 3. Inversion error for CNN-A. Average inversion percentage error (normalized) for all the layers of CNN-A and various amounts

of V7 regularisation: A, = 0.5, A2 = 10A; and A3 =

100A;. In bold face are the error values corresponding to the regularizer that works

best both qualitatively and quantitatively. The deviations specified in this table are the standard deviations of the errors and not the standard

deviations of the mean error value.
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Experiments with deep representation (CNN-A)

e Qualitatively Analysis:
o reconstruction for a image from each layer of CNN-A

- + e F -

o \e AL

Figure 6. CNN reconstruction. Reconstruction of the image of Fig. 5.a from each layer of CNN-A. To generate these results, the regular-
ization coefficient for each layer is chosen to match the highlighted rows in table 3. This figure is best viewed in color/screen.

37



Experiments with deep representation (CNN-A)

e Qualitatively Analysis:
o reconstruction for a image from each layer of CNN-A

Figure 6. CNN reconstruction. Reconstruction of the image of Fig. 5.a from each layer of CNN-A. To generate these results, the regular-
ization coefficient for each layer is chosen to match the highlighted rows in table 3. This figure is best viewed in color/screen.
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Experiments with deep representation (CNN-A)

e Reconstructions obtained from subset of representation in different
CNN layers

Figure 9. CNN receptive field. Reconstructions of the image of Fig. 5.a from the central 5 x 5 neuron fields at different depths of CNN-A.
The white box marks the field of view of the 5 x 5 neuron field. The field of view is the entire image for conv5 and relu5. 39



Weakness and Future Work

e Weakness

(@)

Generate an image with the feature representation that similar to the given
representation, not the image similar to the given image

Error detect for comparing the original image representation and the inverse image
representation

Optimization implements at test time, requires computed gradient of feature
representation, makes it relatively slow

Implementation on only AlexNet, but not other state-of-art CNN

“Spikes” generated by using regularizer

e Future Work

(@)

(@)

@)

Implementation on other state-of-art CNN
Experiment with more expressive natural image priors
Extract subsets of neurons that encode object parts and try to establish sub-networks

that capture different details of the image

40



Recent work

Inverting visual representations with convolutional networks

Dosovitskiy, Alexey, and Thomas Brox

Visualizing Deep Convolutional Neural Networks Using Natural Pre-images
Aravindh Mahendran, Andrea Vedald

http://link.springer.com/article/10.1007/s11263-016-0911-8
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http://link.springer.com/article/10.1007/s11263-016-0911-8
http://link.springer.com/article/10.1007/s11263-016-0911-8
http://link.springer.com/article/10.1007/s11263-016-0911-8

Demo

Original video:
http://techtalks.tv/talks/understanding-deep-image-representations-by-inverting-them/61629/
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https://docs.google.com/file/d/0B21i_dZYr0dQaEFkakRFWUkwWjQ/preview

