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Classification Object Detection
+ Localization

V.S.

CAT CAI, DOG, DUCK



Localization as Regression

Input: image

Neural Net Output:
p  Box coordinates
(4 numbers)

Correct output:

box coordinates
Only one object, (4 numbers)
simpler than detection

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| QTllﬂS

\ Loss:
/y L2 distance
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Sliding Window: Overfeat  (ppm as weln)

In practice use many sliding window
locations and multiple scales

Window positions + score maps Box regression outputs

i ll:HIij_]-l !

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mﬁs

Final Predictions

o8



Detection as Regression?

DOG, (x,y, w, h)

CAT, (X, y, w, h)

CAT, (x,y, w, h)
> DUCK (X, y, w, h)

= 16 numbers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T\lﬁs g



Detection as Regression?

DOG, (x,y, w, h)
CAT, (X, y, w, h)

= 8 numbers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ehﬁs 11



Detection as Regression?

CAT, (X, y, w, h)
CAT, (X, y, w, h)

> CAT (X, Yy, w, h)

= many numbers

Need variable sized outputs

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| GTl.lftS
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Detection as Classification

CAT? NO

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ehﬁs e



Detection as Classification

CAT? YES!

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ehﬁs 114



Detection as Classification

CAT? NO

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ehﬁs g



Detection as Classification

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp1sodl 3 Tufts g



Detection as Classification

Problem: Need to test many positions and scales,
and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

* Original slides borrowed from Andrej Karpathy W
and Li Fei-Fei, Stanford cs231n compisodl €3 Tufts 17



Region Proposals

e Find “blobby” image regions that are likely to contain objects
e “Class-agnostic” object detector
e | ook for “blob-like” regions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mﬁs e



Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Convert
regions
to boxes

Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| GTl.lftS i



Region Proposals: Many other choices

Outputs  Outputs Control Time Repea-  Recall  Detection
Method Approach chltnpu.-nts Sctf:n.- #proposals  (sec.) tablslity Results Results
Bing [18] Window scoring v v 0.2 P - .
cemc [19) Grouping v v 250 - .. *
EdgeBoxes [20] Window scoring v v 0.3 o . .o
Endres [21] Grouping v v v 100 o e
Geodesic [22] Grouping v : 1 . * ok V.
MCG [23] Grouping v v : 30 * * ok o
Objectness [24] Window scoring v v 3 . .
Rahtu [25] Window scoring v v 3 . . *
RandomizedPrim’s [26] Grouping v v 1 * * "
Rantalankila [27] Grouping v v 10 o . ,e
Rigor [28] Grouping v 10 # . .
SelectiveSearch [29] Grouping v v . 10 o . .
Gaussian v 0 *
SlidingWindow v 0 'S E .
Superpixels v 1 *
Uniform v 0 .

Hosang et al, “What makes for effective detection proposals?”, PAMI 2015

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

comp150di @'Ihﬁs

120



Putting it together: R-CNN

Apply bounding-box regressors
Bbox reg || SVMs Classify regions with SVMs

Bbox reg || 5VMs

Bbox reg | | SVMs Forward each region
through ConvNet

ConviNet

ConviNet b !
Warped image regions

Regions of Interest (Rol)
from a proposal method
(~2k)

Girshick et al. CVPR14. Post hoc component

* Original slides borrowed from Andrej Karpathy "
and Li Fei-Fei, Stanford cs231n compisod! €3 Tufts

Girschick et al, “Rich feature hierarchies for
accurate object detection and semantic
segmentation”, CVPR 2014

Slide credit: Ross Girschick
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Fast R-CNN (test time)

Regions of
Interest (Rols)
from a proposal
method

=
n &

FCs Fully-connected layers
' I L
Ay By

Forward whole image through ConvNet

ConvNet

Input image



Faster R-CNN:

Insert a Region Proposal
dassifier Network (RPN) after the last

convolutional layer
Rol pooling

RPN trained to produce region

aroposals/ | proposals directly; no need for
/ external region proposals!

Region Proposal Network _
' After RPN, use Rol Pooling and an
——— upstream classifier and bbox

regressor just like Fast R-CNN

CNN
, Ren et al, “Faster R-CNN: Towards Real-Time Object Detection
A with Region Proposal Networks”, NIPS 2015

—_— Slide credit: Ross Girschick

* Original slides borrowed from Andrej Karpathy e
and Li Fei-Fei, Stanford cs231n comp1sodl 3 Tufts 142



Summary:

How to frame detection problem?

Regression?
e OK for one or a fixed number of objects (localization with sliding windows)
e Sliding windows is slow (especially when the number of objects too large)
e Number of objects unknown?

Classification?
e Need region-based method to propose bounding boxes (~2000 boxes, R-CNN)
e Still kind of slow (especially considering real-time detection)
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You Only Look Once:
Unified, Real-Time Object Detection

Joseph Redmon*, Santosh Divvala*T, Ross Girshick¥, Ali Farhadi*
University of Washington™, Allen Institute for AIJ’, Facebook Al Research¥
http://pjreddie.com/yolo/

Abstract

We present YOLO, a new approach to object detection.
Prior work on object detection repurposes classifiers to per-
form detection. Instead, we frame object detection as a re-
gression problem to spatially separated bounding boxes and
associated class probabilities. A single neural network pre-
dicts bounding boxes and class probabilities directly from
Jull images in one evaluation. Since the whole detection
pipeline is a single network, it can be optimized end-to-end
directly on detection performance.

Our unified architecture is extremely fast. Qur base
YOLO model processes images in real-time at 45 frames
per second. A smaller version of the network, Fast YOLO,
processes an astounding 155 frames per second while
still achieving double the mAP of other real-time detec-
tors. Compared to state-of-the-art detection systems, YOLO
makes more localization errors but is less likely to predict
false positives on background. Finally, YOLO learns very
general representations of objects. It outperforms other de-

1. Resize image.
2. Run convolutional network.
3. Non-max suppression.

Figure 1: The YOLO Detection System. Processing images
with YOLO is simple and straightforward. Our system (1) resizes
the input image to 448 x 448, (2) runs a single convolutional net-
work on the image, and (3) thresholds the resulting detections by
the model’s confidence.

methods to first generate potential bounding boxes in an im-
age and then run a classifier on these proposed boxes. After
classification, post-processing is used to refine the bound-
ing boxes, eliminate duplicate detections, and rescore the
boxes based on other objects in the scene [13]. These com-
plex pipelines are slow and hard to optimize because each
individual component must be trained separately.
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We split the i |mage |nto a grld

S=7

Total # of Cells:
S xS =49
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S=7

Total # of Cells:
S xS =49
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Total # of Cells:
S xS =49
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S=7
Total # of Cells:
N ' *"Ws S xS =49
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Each cell predlcts boxes and confidences: P(Object)

S=7

Total # of Cells:
S xS =49

Original Slides from:
https://pjreddie.com/dar

knet/yolo/
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S=7

Total # of Cells:
S xS =49

B=2
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Each cell predicts boxes and confidences: P(Object)

<y

S=7

e 1 Total # of Cells:
S x S =49

B=2
Total # of boxes:
SxSxB=98

Original Slides from:
https://pjreddie.com/dar
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Each cell also predicts a class probability.
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Then we combine the box and class predictions.

i e o R &
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This parameterization fixes the output size

Each cell predicts:

- For each bounding box:

4 coordinates (x, y, w, h)
1 confidence value

- Some number of class
probabilities

For Pascal VOC: A/O%:L g "’iyg K"“:éfo%j g lkcg %@4,/”'%;‘%6,/ ‘7/‘»/0
d , o%o/o/é %“’/
- Tx7 gri -
2b : il 1l 1st - 5th 6th - 10th 11th - 30th
- ounding boxes / ce Box #1 Box #2 Class Probabilities
- 20 classes
7TXx7x(2x5+20)=7x7x30tensor =1470 outputs Original Slides from:

https://pjreddie.com/dar
knet/yolo/
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Thus we can train one neural network to be a whole
detection pipeline

Nr

77@
224
3
.
— P
224) oo e |

! 14| (P4

L 7 7

3 o 1024 4096 30

Conv. Layer Convolutional Layers Conn. Layer  Conn. Layer

7x7x64-52 Detection Layer
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During training, match example to the right cell
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During training, match example to the right cell
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Adjust that cell’s class prediction

T

e I

Dog=1
Cat=0
Bike =0
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Look at that cell’s predicted boxes
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Find the best one, make it “responsible for that prediction
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Find the best one, make it “responsible for that prediction
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Strengths and Weaknesses (compared to the R-CNN family)

Strengths Weaknesses
e Fast e |ocalization not as accurate
e Generalizes better (i.e. good at detecting e Limited to B objects per grid (B=2 in
objects in paintings) paper/this presentation)

e Less background false positives
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Figure 3: The Architecture. Our detection network has 24 convolutional layers followed by 2 fully connected layers. Alternating 1 x 1
convolutional layers reduce the features space from preceding layers. We pretrain the convolutional layers on the ImageNet classification
task at half the resolution (224 x 224 input image) and then double the resolution for detection.



