

Instructor:
Genevieve Patterson

sheep
sheep sheep heersheep
sheep
sherp-op sheepshespopheep
shetsheepheep
sheep sheep sheemeep sheep sheep

Ridiculously Brief History of Computer Vision

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

PROJECT MAC

Artificial Intelligence Group
Vision Memo. No. 100.
July 7, 1966

THE SUMMER VISION PROJECT
Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Parts-and-shape models

- Model:
- Object as a set of parts
- Relative locations between parts
- Appearance of part

Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)

Eigenfaces (Turk \& Pentland, 1991)

Local features for object instance recognition - SIFT

D. Lowe $(1999,2004)$
comp150d Tufts

Carefully Considered Features

- Histogram of Oriented Gradients

- Self-Similarity

Canonical Challenges

Classification Challenge

is there a cat?

Detection Challenge

Segmentation Challenge

Training Pipeline

Sliding window approaches

- Turk and Pentland, 1991
- Belhumeur, Hespanha, \& Kriegman, 1997
- Schneiderman \& Kanade 2004
- Viola and Jones, 2000

Spatial pyramid representation

- Extension of a bag of features
- Locally orderless representation at several levels of resolution

level 0

level 1

level 2

Caltech101 dataset

Multi-class classification results (30 training images per class)

	Weak features (16)		Strong features (200)	
Level	Single-level	Pyramid	Single-level	Pyramid
0	15.5 ± 0.9		41.2 ± 1.2	
1	31.4 ± 1.2	32.8 ± 1.3	55.9 ± 0.9	57.0 ± 0.8
2	47.2 ± 1.1	49.3 ± 1.4	63.6 ± 0.9	$\mathbf{6 4 . 6} \pm 0.8$
3	52.2 ± 0.8	$\mathbf{5 4 . 0} \pm 1.1$	60.3 ± 0.9	64.6 ± 0.7

The PASCAL Visual Object Classes Challenge 2009 (VOC2009)

- Twenty object categories (aeroplane to TV/monitor)
- Three challenges:
- Classification challenge (is there an X in this image?)
- Detection challenge (draw a box around every X)
- Segmentation challenge

Discriminatively trained part-based

P. Felzenszwalb, R. Girshick,
D. McAllester, D. Ramanan, "Object Detection with Discriminatively Trained
Part-Based Models,"' PAMI 2009

Why Deep Networks?

Making every single module in the system trainable.

Every module is trained simultaneously so as to optimize a global loss function.

Includes the feature extractor, the recognizer, and the contextual post-processor (graphical model)

Problem: back-propagating gradients through the graphical model.

Components of End-to-End Learning

Texture representations vs CNNs

Feedforward Neural Network

- Logistic Function

$$
y=\frac{1}{1+e^{-x}}
$$

- tanh

$$
\phi\left(v_{i}\right)=\tanh \left(\beta_{1}+\beta_{0} \sum_{j} v_{i, j} x_{j}\right)
$$

- ReLU

$$
f(x)= \begin{cases}0 & \text { for } \quad x<0 \\ x & \text { for } \quad x \geq 0\end{cases}
$$

Neurons

Very bad (slow to train)
Very good (quick to train)

Rectified Linear Unit (ReLU)

Image Filters

The Dot Product

- Also called 'scalar product'
- Sum of the product of each element of two sequences
- $(1,2,3) \cdot(3,4,5)=1^{*} 3+2^{*} 4+3^{*} 5=24$
- $a=(1,2)$
- $b=(3,1)$
- $a \cdot b=5$

- Dot product is the length of a projected on \mathbf{b}

Practice with linear filters

0	0	0
0	1	0
0	0	0

$?$

Original

Practice with linear filters

Original

Filtered
(no change)

Practice with linear filters

0	0	0
0	0	1
0	0	0

$?$

Original

Practice with linear filters

Original

Shifted left
By 1 pixel

Box Filter

What does it do?

- Replaces each pixel with an average of its neighborhood
- Achieve smoothing effect (remove sharp features)
$\mathrm{g}[\cdot \cdot]$

Smoothing with box filter

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[., .] \quad h[., .]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[, \ldots,
$$

$$
[\cdot, .,]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[.,] \quad h[., .]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[.,] \quad h[., .]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[., .] \quad h[.,]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[., .]
$$

$$
h[., .]
$$

Image filtering

$$
\mathbf{O}\left[\bullet, \quad \cdot \frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right.
$$

$$
f[., .]
$$

$$
h[., .]
$$

Image filtering

$$
\mathrm{g}[\cdot ; \cdot]
$$

$$
f[\square]
$$

What else is possible with Filters?

- Really important for photo editing!
- Enhance images
- Denoise, resize, increase contrast, etc.
- Extract information from images
- Texture, edges, distinctive points, etc.
- Detect patterns —-> Convolutional Networks!!
- Template matching

Practice with linear filters

Original

(Note that filter sums to 1)
?

Practice with linear filters

Original

Sharpening filter

- Accentuates differences with local average

Sharpening

before

after

Noise

Median filters

- A Median Filter operates over a window by selecting the median intensity in the window.
- What advantage does a median filter have over a mean filter?

Comparison: salt and pepper noise

Other filters

1	0	-1	
2	0	-2	
1	0	-1	
Sobel			

Vertical Edge

Other filters

Horizontal Edge

Key properties of linear filters

Linearity:
 filter $\left(f_{1}+f_{2}\right)=$ filter $\left(f_{1}\right)$ filter $\left(f_{2}\right)$

Shift invariance: same behavior regardless of pixel location
filter(shift(f)) = shift(filter(f))

More properties

- Commutative: a * $b=b^{*} a$
- Conceptually no difference between filter and signal
- But particular filtering implementations might break this equality
- Associative: $a^{*}\left(b^{*} c\right)=\left(a{ }^{*} b\right){ }^{*} c$
- Often apply several filters one after another: $\left(\left(\left(a^{*} b_{1}\right){ }^{*} b_{2}\right)^{*} b_{3}\right)$
- This is equivalent to applying one filter: $\mathrm{a}^{*}\left(b_{1}{ }^{*} b_{2}{ }^{*} b_{3}\right)$
- Distributes over addition: $a^{*}(b+c)=(a * b)+\left(a{ }^{*} c\right)$
- Scalars factor out: $k a * b=a * k b=k(a * b)$
- Identity: unit impulse $\boldsymbol{e}=[0,0,1,0,0]$,
$a^{*} e=a$

Practical matters

- What about near the edge?
- the filter window falls off the edge of the image
- need to extrapolate
- methods:
- clip filter (black)
- wrap around
- copy edge
- reflect across edge

Take-home messages about filters

- Linear filtering is sum of dot product at each position
- Can smooth, sharpen, translate (among many other uses)

- Be aware of details for filter size, extrapolation, cropping

Layer 1: 3x96 kernels, RGB->96 feature maps, 11×11 Kernels, stride 4

Current
Computer Vision

Fig. 8. More results using our multiscale convolutional network and a flat CRF on the Stanford Background Dataset.

[^0]
Learning Hierarchical Features for Scene Labeling

Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun [PAMI '13]

AlexNet Architecture - 7 hidden weight layers

The output of the last fully-connected layer is fed to a 1000-way softmax which produces a distribution over the 1000 class labels

The ReLU non-linearity is applied to the output of every convolutional and fully-connected layer.

Detection

Fast R-CNN

- convolve once
- project + detect

Faster R-CNN

- end-to-end proposals and detection
- 200 ms / image inference
- fully convolutional Region Proposal Net
+ Fast R-CNN
arXiv and code for Fast R-CNN
Ross Girshick, Shaoqing Ren, Kaiming He, Jian Sun

Pixelwise Prediction

Fully convolutional networks for pixel prediction applied to semantic segmentation

- end-to-end learning
- efficient inference and learning 150 ms per-image prediction
- multi-modal, multi-task

Further applications

- depth
- boundaries
- flow + more

CVPR15 arXiv and pre-release

Jon Long* \& Evan Shelhamer*,

Sequences

Recurrent Net and Long Short Term Memory LSTM are sequential models

- video
- language
- dynamics
learned by backpropagation through time.

LRCN: Long-term Recurrent Convolutional Network

- activity recognition
- image captioning
- video captioning

CVPR15 arXiv and project site

A group of young men playing a game of soccer.

Pre-trained Models

Lots of Data

Style
Recognition

Dogs vs. Cats
top 10 in
10 minutes

IM영NET Large Scale Visual Recognition Challenge (ILSVRC) 2015

IM쑤GENET Large Scale Visual Recognition Challenge

Year 2014	
GoogleNet	VG
皿	image
宔	conv－64
界	conv－64
亩	maxpool
	conv－128
画耍良	conv－128
自皿首自	maxpool
	conv－256
	conv－256
	maxpool
号	conv－512
＂首面皿自	conv－512
－玉首	maxpool
	conv－512
	conv－512
自 党	maxpool
广星閶島	FC－4096
	FC－4096
	FC－1000
Convolution	softmax
Pooling	
Softmax Other	
［Szegedy arxiv 2014］	monyan

Year 2015
MSRA

Our results on COCO - too many objects, let's check carefully!

or Shaoqing Ren, Kaiming He, Ross Girshick, \& Jian Sun. "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks". NIPS 2015.

Visual Turing test for computer vision systems

Donald Geman ${ }^{\text {a }}$, Stuart Geman ${ }^{\text {b, } 1}$, Neil Hallonquist ${ }^{\text {a }}$, and Laurent Younes ${ }^{\text {a }}$

3618-3623 | PNAS | March 24, 2015 | vol. 112 | no. 12

1. $Q:$ Is there a person in the blue region?

A: yes
(Label this person 1)
3. Q : Is person 1 carrying something?
4. Q: Is person 1 female?
5. Q: Is person 1 walking on a sidewalk?
6. Q: Is person 1 interacting with any other object?
9. Q: Is there a unique vehicle in the yellow region?
(Label this vehicle 1)
10. Q : Is vehicle 1 light-colored?
11. Q: Is vehicle 1 moving?
12. Q: Is vehicle 1 parked and a car?
14. Q: Does vehicle 1 have exactly one visible tire?
15. O : Is vehicle 1 interacting with any other object?
17. Q : is there a unique person in the red region?
18. Q : Is there a unique person that is female in the red region? 19. Q: Is there a person that is standing still in the red region? 20. Q: Is there a unique person standing still in the red region? (Label this person 2)
23. Q : Is person 2 interacting with any other object? 24. Q : Is person 1 taller than person 2 ?
25. Q: Is person 1 closer (to the camera) than person 2?
26. Q : Is there a person in the red region?
27. Q: Is there a unique person in the red region?
(Label this person 3)
$!$
36. Q: Is there an interaction between person 2 and person 3 ? 37. Q; Are person 2 and person 3 talking?

A: yes
A: yes
A: yes
A: yes
A: no
A: yes
A: yes
A: no
A: yes

A: no
A: no
A: yes
A: yes

Deep Learning IRL

Self-Driving Cars

Product Search

Auto-tagging

Predicted Tags

north america	politics	business
leader	finance	commerce
government	meeting	conference
	group	

Medical Research

Image Generation

What is this class about?

Course Description

- Learned Representations
- Object Proposals
- CNN detection and segmentation
- Weakly Supervised and Unsupervised CNNs
- Recurrent Neural Nets and LongShort Term Memory Networks
- Generative Networks
- Siamese / Ranking / Triplet Networks
- Co-attention models
- Residual Nets
- Ensemble methods
- Reinforcement Learning

Preparation

- Programming Experience
- Python, Matlab
- Math
- Linear Algebra, Basic Calculus, Probability
- Machine Learning
- Computer Vision

Step 1: Datasets

flickri-maned

Search
Everyone's Uploads \qquad $-$
Photos Groups People
indigo bunting

From dwaynejava

From MomOnTher.

View: Small
Medium | Detail

From Deve 2x

Image credit: Flickr.com

Building datasets

Annotators

amazonmechanical turk
Is there an Indigo bunting in the image?

http://mscoco.org

http://mscoco.org

\checkmark Instance segmentation \checkmark Non-iconic Images

http://mscoco.org

- 330,000 images
- >2 million instances (700k people)
- Every instance is segmented
- 7.7 instances per image (3.5 categories)

http://mscoco.org

Beyond detection

\checkmark Sentences

two giraffe standing next to each other in front of a wooden fence. two giraffes standing in the dirt near a gate. two giraffes stand by a food box awaiting the goods. two giraffes are standing next to a wooden fence. two giraffes standing alone by a picket fence.

Collecting Image Annotations Using Amazon's Mechanical Turk, C. Rashtchian, P. Young, M. Hodosh, J. Hockenmaier, NAACL HLT Workshop on Creating Speech and Language Data with Amazon's Mechanical Turk, 2010

Beyond detection

\checkmark Keypoints
(provided by Facebook)

http://mscoco.org

Microsoft COCO

Common Objects in Context

- Detection
- Segmentation

Evaluation Metrics

Average Precision (AP) :

```
AP
APIOU=.50 % AP at IOU=.50:.05:.95 (determines challenge winner)
    APIoU=. }7
% AP at IoU=.50 (PASCAL VOC metric)
% AP at IoU=.75 (strict metric)
```


Challenges Score: AP

- AP is averaged over multiple IoU values between 0.5 and 0.95 (and categories, size).
- More comprehensive metric than the traditional AP at a
 fixed loU value (0.5 for Pascal).

Evaluation Metrics

```
AP Across Scales:
    APsmall
    APmedium % AP for small objects: area < 32'
    APlarge
```

```
% AP for medium objects: 32 < area < 96'
```

% AP for medium objects: 32 < area < 96'
% AP for large objects: area > 96

```
% AP for large objects: area > 96
```


Other Scores: Size AP

- AP is averaged over small (A < 32×32), medium ($32 \times 32<A<96 \times 96$) and large (A>96×96) instances of objects.
$>96 x 96$

Evaluation Metrics

```
Average Recall (AR):
    AR max=1
    % AR given 1 detection per image
    AR}\mp@subsup{R}{}{max=10 %AR given }10\mathrm{ detections per image
    AR}\mp@subsup{}{}{max}=100 %AR given 100 detections per imag
AR Across Scales:
    AR small %AR for small objects: area < 32'
    AR'mium % AR for medium objects: 32 < area < 96 
    AR'arge % AR for large objects: area > 96
```


Other Scores: AR

- Measures the maximum recall over a fixed number of detections allowed in the image of $1,10,100$.
- AR is averaged over small (A < 32×32), medium ($32 \times 32<A<96 \times 96$) and large (A>96×96) instances of objects.

Detection Leaderboard (II)

Object Localization can improve

- AP @ 0.5

Also hard for humans

$\mathrm{IoU}=0.5$

$\mathrm{IoU}=0.7$

$\mathrm{IoU}=0.95$

Also hard for humans

IoU = 0.5

IoU $=0.75$

$\mathrm{IoU}=0.95$

COCO AP varies across supercategories and size

Bounding Box Detection Errors (I)

What type of errors are algorithms making?

\square AP @ IoU = [0.5; 0.75]
Super-category FP removed
Category FP removed \square Background FP removed
AP @ IoU = 0.1 \square FN errors are removed
MSRA
overall-all-all

Bounding Box Detection Errors (II)

[^1]
\square Super-category FP removed
Category FP removed

indoor-book-medium

Background FP removed
FN errors are removed

Some success cases ...

... and some failures

[^0]: This time though, the reviewers were particularly clueless, or negatively biased, or both. I was very sure that this paper was going to get good reviews because: 1) it has two simple and generally applicable ideas for segmentation ("purity tree" and "optimal cover"); 2) it uses no hand-crafted features (it's all learned all the way through. Incredibly, this was seen as a negative point by the reviewers!); 3) it beats all published results on 3 standard datasets for scene parsing; 4) it's an order of magnitude faster than the competing methods.

 If that is not enough to get good reviews, I just don't know what is.

 So, I'm giving up on submitting to computer vision conferences altogether.

[^1]: Results from MSRA team

