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comp150dl:  
Deep Learning for  

Computer Vision

2

Instructor: 
Genevieve Patterson
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Ridiculously Brief History 
of Computer Vision
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Parts-and-shape models
• Model: 

– Object as a set of parts 
– Relative locations between parts 
– Appearance of part

5Figure from [Fischler & Elschlager 73]



Representing people
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Eigenfaces (Turk & Pentland, 1991)
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Local features for object 
instance recognition - SIFT

8D. Lowe (1999, 2004)
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Carefully Considered Features
• Histogram of Oriented 

Gradients 

• Self-Similarity

9
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Canonical Challenges
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Classification Challenge

11

is there a cat?
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Detection Challenge
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Segmentation Challenge
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Dataset
Training Pipeline

Feature
Feature Extraction

Dataset  
Labels Classifier

Dataset  
Features Library of  

Classifiers

Repeat for 
many items …
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Sliding window approaches

• Turk and Pentland, 1991 
• Belhumeur, Hespanha, & Kriegman, 1997 
• Schneiderman & Kanade 2004 
• Viola and Jones, 2000

15
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• Extension of a bag of features 
• Locally orderless representation at several levels of resolution

Spatial pyramid representation

level 0 level 1 level 2

16Lazebnik, Schmid & Ponce (CVPR 2006)
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Caltech101 dataset

17

Multi-class classification results (30 training images per class)
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• Twenty object categories (aeroplane to 
TV/monitor)  

• Three challenges: 
– Classification challenge (is there an X in this 

image?) 
– Detection challenge (draw a box around 

every X) 
– Segmentation challenge

Slides from Noah 
Snavely
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Discriminatively trained part-based 
models

19

P. Felzenszwalb, R. Girshick, 
D. McAllester, D. Ramanan, 

"Object Detection with 
Discriminatively Trained 

Part-Based Models," PAMI 
2009

http://www.ics.uci.edu/~dramanan/papers/latentmix.pdf
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Why Deep Networks?

20



Y LeCun
Global (End-to-End) Learning: Energy-Based Models.

Making every single module in the 
system trainable.

Every module is trained 
simultaneously so as to optimize a 
global loss function. 

Includes the feature extractor, the 
recognizer, and the contextual 
post-processor (graphical model)

Problem: back-propagating 
gradients through the graphical 
model.

ConvNet

Or other

Deep archi.

Energy-Based

Module

Output

Input

Latent

Variables

Energy
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Components of  
End-to-End Learning

22
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Feedforward Neural Network

24

• Logistic Function 

• tanh  

• ReLU



Perceptron Rectified Linear Unit (ReLU)

Figure from Karpathy 2015



Y LeCun
Convolutional Network

[LeCun et al. NIPS 1989]

Filter Bank +non-linearity

Filter Bank +non-linearity

Pooling

Pooling

Filter Bank +non-linearity



How 
Convolution 

Works
Figure from Karpathy 2015
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Image Filters

28
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The Dot Product
• Also called ‘scalar product’ 

• Sum of the product of each element of two sequences 

• (1,2,3)   (3,4,5) = 1*3+2*4+3*5 = 24 

• a = (1,2) 

• b = (3,1) 

• a   b = 5 

• Dot product is the length of a projected on b

29
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Practice with linear filters

30

000

010

000

Original

?

Source: D. Lowe
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Practice with linear filters

31

000

010

000

Original Filtered 
(no change)

Source: D. Lowe
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Practice with linear filters
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000

100

000

Original

?

Source: D. Lowe
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Practice with linear filters

33

000

100

000

Original Shifted left
By 1 pixel

Source: D. Lowe
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What does it do? 
• Replaces each pixel with an 

average of its neighborhood 

• Achieve smoothing effect 
(remove sharp features) 111

111

111

Slide credit: David Lowe (UBC)

],[g ⋅⋅

Box Filter
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Smoothing with box filter



comp150dl 36

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

Credit: S. Seitz

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅



comp150dl 37

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz



comp150dl 38

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz



comp150dl 39

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz



comp150dl 40

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz



comp150dl 41

0 10 20 30 30

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz

?



comp150dl 42

0 10 20 30 30

50

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

[.,.]h[.,.]f

Image filtering

111

111

111

],[g ⋅⋅

Credit: S. Seitz

?



comp150dl 43

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 90 0 90 90 90 0 0

0 0 0 90 90 90 90 90 0 0

0 0 0 0 0 0 0 0 0 0

0 0 90 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 10 20 30 30 30 20 10

0 20 40 60 60 60 40 20

0 30 60 90 90 90 60 30

0 30 50 80 80 90 60 30

0 30 50 80 80 90 60 30

0 20 30 50 50 60 40 20

10 20 30 30 30 30 20 10

10 10 10 0 0 0 0 0

[.,.]h[.,.]f

Image filtering
111
111
111],[g ⋅⋅

Credit: S. Seitz



comp150dl

What else is possible with Filters?

• Really important for photo editing! 
– Enhance images 

• Denoise, resize, increase contrast, etc. 
– Extract information from images 

• Texture, edges, distinctive points, etc. 
– Detect patterns —-> Convolutional Networks!! 

• Template matching

44
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Practice with linear filters

45

Original

111
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000
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000 - ?
(Note that filter sums to 1)

Source: D. Lowe
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Practice with linear filters

46

Original
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Sharpening filter 
- Accentuates differences with local average

Source: D. Lowe
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Sharpening

47Source: D. Lowe
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Noise

48
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© 2006 Steve Marschner • 45

Median filters

• A Median Filter operates over a window by 
selecting the median intensity in the 
window. 

• What advantage does a median filter have 
over a mean filter?

49Slide by Steve Seitz
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Comparison: salt and pepper noise

50Slide by Steve Seitz
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Other filters

51

-101

-202

-101

Vertical Edge 
(absolute value)

Sobel
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Other filters

52

-1-2-1

000

121

Horizontal Edge 
(absolute value)

Sobel
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Key properties of linear filters

Linearity:  
filter(f1 + f2) = filter(f1) + filter(f2) 

Shift invariance: same behavior regardless 
of pixel location 
filter(shift(f)) = shift(filter(f))

53Source: S. Lazebnik
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More properties
• Commutative: a * b = b * a 

• Conceptually no difference between filter and signal 
• But particular filtering implementations might break this equality 

• Associative: a * (b * c) = (a * b) * c 
• Often apply several filters one after another: (((a * b1) * b2) * b3) 
• This is equivalent to applying one filter: a * (b1 * b2 * b3) 

• Distributes over addition: a * (b + c) = (a * b) + (a * c) 

• Scalars factor out: ka * b = a * kb = k (a * b) 

• Identity: unit impulse e = [0, 0, 1, 0, 0], 
a * e = a

54Source: S. Lazebnik
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Practical matters
• What about near the edge? 

– the filter window falls off the 
edge of the image 

– need to extrapolate 

– methods: 
• clip filter (black) 
• wrap around 
• copy edge 
• reflect across edge

55Source: S. Marschner
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Take-home messages about filters

• Linear filtering is sum of dot product at each position 
– Can smooth, sharpen, translate (among many other uses) 

• Be aware of details for filter size, extrapolation, 
cropping

56

111

111

111



Y LeCun
Kernels: Layer 1 (11x11) 

Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4
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Current  
Computer Vision

58
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Learning Hierarchical Features for Scene Labeling

Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun [PAMI ’13] 

This time though, the reviewers were 
particularly clueless, or negatively biased, or 
both. I was very sure that this paper was 
going to get good reviews because: 1) it has 
two simple and generally applicable ideas for 
segmentation ("purity tree" and "optimal 
cover"); 2) it uses no hand-crafted features 
(it's all learned all the way through. Incredibly, 
this was seen as a negative point by the 
reviewers!); 3) it beats all published results 
on 3 standard datasets for scene parsing; 4) 
it's an order of magnitude faster than the 
competing methods. 

If that is not enough to get good reviews, I 
just don't know what is. 

So, I'm giving up on submitting to computer 
vision conferences altogether. 



AlexNet Architecture - 7 hidden weight layers

60



Fast R-CNN 
- convolve once 
- project + detect

Detection

Ross Girshick, Shaoqing Ren, 
Kaiming He, Jian Sun

Faster R-CNN 
- end-to-end proposals and detection 
- 200 ms / image inference 
- fully convolutional Region Proposal Net 

+ Fast R-CNN

arXiv and code for Fast R-CNN

http://arxiv.org/abs/1504.08083
https://github.com/rbgirshick/fast-rcnn


Fully convolutional networks for pixel prediction 
applied to semantic segmentation 
- end-to-end learning 
- efficient inference and learning 

150 ms per-image prediction 
- multi-modal, multi-task

Pixelwise Prediction

Further applications 
- depth 
- boundaries 
- flow + more

Jon Long* & Evan Shelhamer*, 
Trevor Darrell

CVPR15 arXiv and pre-release

http://arxiv.org/abs/1411.4038
https://github.com/BVLC/caffe/wiki/Model-Zoo#fully-convolutional-semantic-segmentation-models-fcn-xs


Recurrent Net and Long Short Term Memory LSTM  
are sequential models 
- video 
- language 
- dynamics 
learned by backpropagation through time.

Sequences

Jeff Donahue et al.

LRCN: Long-term Recurrent Convolutional Network 
- activity recognition 
- image captioning 
- video captioning

CVPR15 arXiv and project site 

http://arxiv.org/abs/1411.4389
http://jeffdonahue.com/lrcn/
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Pre-trained Models

64

Dogs vs. 
Cats 
top 10 in  
10 minutes

© kaggle.com

Your Task

Style 
Recognition

Lots of Data

ImageNet

image by Andrej Karpathy
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Deep Learning IRL

71
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Self-Driving Cars

72DeepTesla
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Product Search

73GrokStyle



comp150dl

Auto-tagging

74Clarifai
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Medical Research

75PathAI
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Image Generation

76Scribbler
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What is this class about?

77
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Course Description
• Learned Representations 

• Object Proposals 

• CNN detection and segmentation 

• Weakly Supervised and 
Unsupervised CNNs 

• Recurrent Neural Nets and Long-
Short Term Memory Networks 

• Generative Networks

78

• Siamese / Ranking / Triplet 
Networks 

• Co-attention models 

• Residual Nets 

• Ensemble methods 

• Reinforcement Learning 
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Preparation
• Programming Experience 

• Python, Matlab 

• Math 

• Linear Algebra, Basic Calculus, Probability 

• Machine Learning 

• Computer Vision

79
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Step 1: Datasets

80







http://mscoco.org



http://mscoco.org



http://mscoco.org

✓ Instance segmentation 
✓ Non-iconic Images



http://mscoco.org

• 330,000 images 
• >2 million instances (700k people) 
• Every instance is segmented 
• 7.7 instances per image (3.5 categories)



http://mscoco.org

✓ Sentences

Beyond detection

Collecting Image Annotations Using Amazon’s 
Mechanical Turk, C. Rashtchian, P. Young, M. Hodosh, J. 
Hockenmaier, NAACL HLT Workshop on Creating Speech and 
Language Data with Amazon’s Mechanical Turk, 2010



http://mscoco.org

Beyond detection

✓ Keypoints 
    (provided by Facebook)
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• Detection

• Segmentation

MS COCO Challenges at ICCV 2015
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Evaluation Metrics

• AP is averaged over multiple 
IoU values between 0.5 and 
0.95 (and categories, size).

Challenges Score: AP

• More comprehensive metric 
than the traditional AP at a 
fixed IoU value (0.5 for Pascal ).
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• AP is averaged over small (A < 32 x 32), medium (32x 32 < A < 96 x 96) and 
large  (A > 96 x 96) instances of objects. 

Evaluation Metrics

< 32x32

32x32 < A < 96x96

> 96x96

Other Scores: Size AP
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Evaluation Metrics

Other Scores: AR

• Measures the maximum recall over a fixed number of detections 
allowed in the image of 1, 10, 100.

• AR is averaged over small (A < 32 x 32), medium (32x 32 < A < 96 x 96) and 
large  (A > 96 x 96) instances of objects. 
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BBox detections and IoU

IoU = 0.5 IoU = 0.7 IoU = 0.95

Also hard for humans



95

BBox detections and IoU

IoU = 0.5 IoU = 0.75 IoU = 0.95

Also hard for humans
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Performance Breakdown (I)

COCO AP varies across supercategories and size
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AP @ IoU = [0.5; 0.75]

AP @ IoU = 0.1

Super-category FP removed

Category FP removed

Background FP removed

FN errors are removed

Bounding Box Detection Errors (I)
What type of errors are algorithms making?

[1] - Hoiem, Derek et al., “Diagnosing error in object detectors.”, ECCV 2012.

MSRA
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[2] - Dollár, Piotr - https://github.com/pdollar/coco

https://github.com/pdollar/coco


98

AP @ IoU = [0.5; 0.75]

AP @ IoU = 0.1

Super-category FP removed

Category FP removed

Background FP removed

FN errors are removed
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Bounding Box Detection Errors (II)

Results from MSRA team.
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Some success cases …

Results from FAIRCNN team.
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… and some failures

Results from FAIRCNN team.


