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Deep Learning for
Computer Vision

Instructor:
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Ridiculously Brief History
of Computer Vision
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MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group July 7, 1966
Vision Memo. No. 100,

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers
effectively in the construction of a significant part of a visual system.
The particular task was chosen part%z because it can be segmented into
sub-problems which will allow individuals to work independently and yet
participate in the construction of a system complex enough to be a real

landmark in the development of "pattern recognition!l.

ATufts

UNIVERSITY
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Parts-and-shape models

 Model:
— ODbject as a set of parts
— Relative locations between parts

— Appearance of part

S EYE . EYE
: . RIGHT
£ EDGE

MOUTH

comp SOdIT'lIftS

Figure from [Fischler & Elschlager 73]



Pictorial structure model

Fischler and Elschlager(73), Felzenszwalb and Huttenlocher(00)
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Ei1genfaces (Turk & Pentland, 1991)
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Local features for object
iInstance recognition - SIFT

ﬁ Pondout of bavy

Casbah,

PRAEMIUN QUALITY

BASMATI |

D. Lowe (1999, 2004) comp150di€9 Tufts

UNIVERSITH?Y
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Canonical Challenges
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Classification Challenge

is there a cat?

comp'1 SOdIT'lIftS

UNIVERSIT?Y
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Detection Challenge

comp1 SOdIT'IJIftS

UNIVERSIT?Y
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Segmentation Challenge

13
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Training Pipeline
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Sliding window approaches

 Turk and Pentland, 1991

 Belhumeur, Hespanha, & Kriegman, 1997
« Schneiderman & Kanade 2004

* Viola and Jones, 2000

comp SOdITuftS
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Spatial pyramid representation

e Exten

¢ LOCa

sion of a bag of features

ly orderless representation at several levels of resolution

il

level O

%

| \W

‘ I I|I | lIIlI

LAl |

H| I

leve

comp 50d|TllftS

1

Lazebnik, Schmid & Ponce (CVPR 2006)
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Caltech101 dataset

Multi-class classification results (30 training images per class)

Weak features (16) Strong features (200)
Level || Single-level = Pyramid | Single-level  Pyramid
O 15.5 ::O.g 41.2 ::1.2
1 314 1.2 328 1.3 | 559 =09 57.0=x0.8
2 47.2 ::11 49.3 Z:l4 63.6 ::()9 64.6 08
3 522 +£0.8 54.0=+1.1 | 60.3+0.9 64.6 £0.7

comp1 50d|TllftS
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The PASCAL Visual Object Classes
Challenge 2009 (VOC2009)

* Twenty object categories (aeroplane to
TV/monitor)

* Three challenges:
— Classification challenge (is there an X in this
image’)
— Detection challenge (draw a box around
every X)
— Segmentation challenge

Slides from Noah
Snavely




Disc

riminatively trained part-based
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P. Felzenszwalb, R. Girshick,
D. McAllester, D. Ramanan,

"Object Detection with

Discriminatively Trained
Part-Based Models."” PAMI

2009

19


http://www.ics.uci.edu/~dramanan/papers/latentmix.pdf

Why Deep Networks”

comp150dl| @Tufts



Globél'(End-to-End) Learning: 'Energy-Bas?d Mode‘i"&

Y LeCun

Energy
Making every single module in the

system trainable.

Energy-Based Every module is trained
Module simultaneously so as to optimize a

global loss function.

Includes the feature extractor, the
ConvNet recognizer, and the contextual
Or other post-processor (graphical model)

Deep archa.

Problem: back-propagating
Latent Output gradients through the graphical

Variables Input model.



Components of
-NAa-to-End Learning

comp150d| '“' T'I.IftS



Texture representations vs CNNs

non-linear
filters

iImage

x Handcrafted
features
. ci| ca| caf|lcaf cs P

“convolutional” layers

feature .
fald encoder representation

Orderless
pooling d(x)

% local T spatial {

p— f, fg = b(X)

V

“fully-connected” (FC) layers

Talk @ ICCV’15 Subhransu Maji (UMass Amherst)

23



Feedforward Neural Network

e Logistic Function

Input Layer

| i,“\‘
=i T HiddenLayer () () () ()
¢(v;) = tanh ([)’ B v;. m,) / :
R g ) 2 SR

OutputLayer C ) €) ) (
0 for <0 /
flz) = {:1: for >0 ,

comp SOdIT'lIftS
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Neurons

f(x) = tanh(x) T f(x) = max(0, X)
() )
+2.0 4 < A »
W \W,

f(z)' f(z,) 'f(ég) |

x=wfiz)+wfiz)+wiz)

x 1S called the total input
to the neuron, and f(x)
IS Its output

Very bad (slow to train) Very good (quick to train)

Perceptron Rectified Linear Unit (ReLU)

Figure from Karpathy 2015



Coh'vo'lLitional Network

/'f\ Filter Bank +non-linearity

1.-# Ve 7 -~ 4 :de!Pmlmg
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Filter Bank +non-linearity

f‘;
E Pooling

Filter Bank +non-linearity
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@ [LeCun et al. NIPS 1989]



Input Volume (+pad 1) (7x7x3) Filter WO (3x3x3)
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Figure from Karpathy 2015



Image rilters
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1The Dot Product

Also called ‘scalar product’

Sum of the product of each element of two sequences
(1,2,3)¢(3,4,5) = 1"3+2"4+3*5 = 24

a=(1,2)
b =(3,1)

aeb=5

Dot product is the length of a projected on b

comp SOdITL'IftS

29



Original

Practice with linear filters

0| 0|0 ‘)
0/1]0 o
0| 0|0

comp1 50dITuftS

Source: D. Lowe
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Original

Practice with linear filters

O 0|0
O 1|0
0| 0|0
Filtered
(no change)
Comp150dIIHﬂ§

Source: D. Lowe
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Original

Practice with linear filters

0| 0|0 ‘)
00| 1 ®
0| 0|0

comp1 50dITuftS

Source: D. Lowe
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Original

Practice with linear filters

0|00
0| 0| 1
0|00
Shifted left
By 1 pixel
Comp150dIIHﬂ§

Source: D. Lowe

33



Box Filter

What does it do?

 Replaces each pixel with an
average of its neighborhood

 Achieve smoothing effect
(remove sharp features)

-
)

A

comp150dl '“' TUftS

Slide credit: David Lowe (UBC)

34



Smoothing with box filter

comp1 50d|TllftS
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Image filtering

Credit: S. Seitz

36



Image filtering

Credit: S. Seitz
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Image filtering

Credit: S. Seitz
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Image filtering

Credit: S. Seitz
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Image filtering

Credit: S. Seitz
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Image filtering

Credit: S. Seitz

41



Image filtering

20

30

30

50

Credit: S. Seitz
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Image filtering of ]

.,C

comp 150dI & LT
p & UNIVERSITY Credit: S. Seitz




What else is possible with Filters®

* Really important for photo editing!

- Enhance images
e Denoise, resize, Increase contrast, etc.

- Extract information from images
e [exture, edges, distinctive points, etc.

- Detect patterns —> Convolutional Networks!!
e [emplate matching

> e

(™

comp150d| '-_J' T'I.lftS
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Original

Practice with linear filters

O 0|0 . 11111

0 210 - — 1111 1 ‘)
9 ®

O 0O 11111

(Note that filter sums to 1)

COmp150d|IHfstl§ 45

Source: D. Lowe



Original

Practice with linear filters

0/ 0|0 . 1111
0|20 m 111
9
000 11111
Sharpening filter

- Accentuates differences with local average

comp 50dITuftS

Source: D. Lowe
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Sharpening

before after

comp 1 50dITIIftS

UNIVERSITY

Source: D. Lowe
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Nolse

Gaussian filter

.

comp150d! €

Tufts
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Median filters

* A Median Filter operates over a window by
selecting the median intensity In the
window.

 \What advantage does a median filter have
over a mean filter?

© 2006 Steve Marschner ¢ 45

-
)

A

comp 50d| ’/“__M' Tuftﬁ Slide by Steve Seitz
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Comparison: salt and pepper noise

Mean Median

TxX7

© 2006 Steve Marschner * 46 Comp1 50d|TllftS Slide by Steve Seitz

UNIVERSITH?Y
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Vertical Edge
comp150di€9 Tufts (absolute value)

UNIVERSIT?Y



Other filters

comp'1 SOdITL'IftS

UNIVERSIT?Y

Horizontal Edge
(absolute value)
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Key properties of linear filters

Linearity:
filter(f;, + £,) = filter(f;) + fi1lter(f,)

Shift invariance: same behavior regardless

of pixel location
filter(shift(f)) = shift(filter(f))

> e

%

comp150d| '-_J' T'I.lftS

Source: S. Lazebnik

53



More properties

e Commutative:a*b=b*a
o Conceptually no difference between filter and signal
o But particular filtering implementations might break this equality

o Associative:a*(b*¢c)=(a”*b)*c
« Often apply several filters one after another: (((a * b,) * b,) * b,)
« This is equivalent to applying one filter: a * (b, * b, * b,)

o Distributes over addition:a*(b+c¢)=(a*b) + (a ™ ¢)
e Scalars factorout: ka *b=a *kb =k (a* b)

e |dentity: unit impulse e = [0, 0, 1, O, O],
a*e=a

comp150dl| %TUftS

Source: S. Lazebnik
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Practical matters
 What about near the edge?

- the filter window falls off the
edge of the image

- need to extrapolate

- methods:
» clip filter (black)
* wrap around
* COpy edge
* reflect across edge

comp1 SOdITI.lftS

Source: S. Marschner



Take-home messages about filters

J g ,\ 1 1 1
gl - 1
Fos 11| 1
B ' _“ 9
8 ’E‘ = 3 T 11 | 1

* Linear filtering is sumof do product at each position
- Can smooth, sharpen, translate (among many other uses)

Qr’ =
:, ’/“/“\‘t‘ \‘ ‘—_ _

 Be aware of details for filter size, extrapolation,
cropping
comp 50d|TuftS
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Kernels: Layer 1" (11x11)

@ Layer 1: 3x96 kernels, RGB->96 feature maps, 11x11 Kernels, stride 4
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Current
Computer Vision




This time though, the reviewers were
particularly clueless, or negatively biased, or
both. | was very sure that this paper was
going to get good reviews because: 1) it has
two simple and generally applicable ideas for
segmentation ("purity tree" and "optimal
cover'); 2) it uses no hand-crafted features
(it's all learned all the way through. Incredibly,
this was seen as a negative point by the
reviewers!); 3) it beats all published results
on 3 standard datasets for scene parsing; 4)
it's an order of magnitude faster than the
competing methods.

It that is not enough to get good reviews, |
just don't know what is.

So, I'm giving up on submitting to computer
vision conferences altogether.

Fig. 8. More results using our multiscale convolutional network and a flat CRF on the Stanford Background Dataset.

Learning Hierarchical Features for Scene Labeling

Clement Farabet, Camille Couprie, Laurent Najman, Yann LeCun [PAMI ’13]

Tufts 59

UNIVERSITY
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AlexNet Architecture - 7 hidden weight layers

3 Fully connected layers

The output of the last fully-connected layer is fed to a 1000-way
softmax which produces a distribution over the 1000 class labels
The ReLU non-linearity is applied to the output of every
convolutional and fully-connected layer.

60



Detection

Fast R-CNN Outputs: bbox
- convolve once [C)eepN 1 B softmax regressor
- project + detect Hfh & e ~ I/ | Ro FC L
| et | pooling |
WIS o |||
' l =Iprojection\_ . :
AN Conv \ Rol feature
feature map vector . .. ..,
Faster R-CNN
- end-to-end proposals and detection
- 200 ms /image inference
- fully convolutional Region Proposal Net
+ Fast R-CNN
arXiv and code for Fast R-CNN Ross Girshick, Shaoging Ren,

Kaiming He, Jian Sun


http://arxiv.org/abs/1504.08083
https://github.com/rbgirshick/fast-rcnn

Pixelwise Prediction

Fully convolutional networks for pixel prediction
applied to semantic segmentation
- end-to-end learning
- efficient inference and learning
150 ms per-image prediction
-  multi-modal, multi-task

forward/inference

backward /learning .Afg}“q :
Q\

| | P

00 o0 21
¥ 3%& 3%& 166 b«Q &0

21

Further applications

- depth

-  boundaries

- flow + more

CVPR15 arXiv and pre-release Jon Long* & Evan Shelhamer*,

Trevor Darrell


http://arxiv.org/abs/1411.4038
https://github.com/BVLC/caffe/wiki/Model-Zoo#fully-convolutional-semantic-segmentation-models-fcn-xs

Sequences

Recurrent Net and Long Short Term Memory LSTM
are sequential models

- video

- language

- dynamics

learned by backpropagation through time.

LRCN: Long-term Recurrent Convolutional Network
- activity recognition

- Image captioning

- video captioning

A group of young men playing a game of
SOCCEr.

CVPR15 arXiv and project site

Jeff Donahue et al.


http://arxiv.org/abs/1411.4389
http://jeffdonahue.com/lrcn/

Pre-trained Moaels
Lots of Data

Your Task

image by Andrej Karpathy

comp1 50d|TllftS

5
T
.

HDR

© kaggle‘.com

Style
Recognition

Dogs vs.
Cats

top 10 In
10 minutes

oz



IMAGENET Large Scale Visual
Recognition Challenge (ILSVRC) 2015

Participation in ILSVRC over the years

240
R ol A 200
% s O
e Q
o ‘— 160
et
5 ILSVRC 2014
- 120 123 entries
o) ILSVRC 2015
— 80 220 entries
Q
..... 0
c 40
-
o 0 ILSVRC 2011 "'::z:tfgs
ILSVRC 2010
3 years 2 year Thisyear
2010-2012 2013-2014 2015
Year

Comp150dITllItS 65

UNIVERSITY



IMAGENE T Large Scale Visual Recognition Challenge

Year 2010
NEC-UIUC

Dense grid descriptor:
HOG, LBP

|

v

Coding: local coordinate,
super-vector

\

Pooling, SPM

v

Linear SVM

[Lin CVPR 2011]

Year 2012
SuperVision

[Krizhevsky NIPS 2012]

Year 2014

GooglLeNet
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Convolutid:
Pooling g

Other

[Szegedy arxiv 2014] [Simonyan arxiv 2014]

VGG

image

conv-64

conv-64

maxpool

_conv-128

conv-128
maxpool

_conv-256

conv-256

maxpool

conv-512

_conv-512
~maxpool

conv-512

_conv-512

maxpool
FC-4096

FC-4096
FC-1000

softmax

Year 2015
MSRA

34-layer residual
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Our results on COCO — too many objects, let’s check carefully!

*the original image is from the COCO dataset

"" ICCW Ed Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. “Deep Residual Learning for Image Recognition”. arXiv 2015.
Shaoqing Ren, Kaiming He, Ross Girshick, & Jian Sun. “Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks”. NIPS 2015.

Intermnational Conference on Computer Vision

comp1 50d|TllftS

UNIVERSITY

6/



Visual Turing test for computer vision systems

Donald Geman?®, Stuart Geman®™’, Neil Hallonquist®, and Laurent Younes®
vol. 112 | no. 12

3618-3623

PNAS | March 24, 2015

1. Q: Is there a person in the blue region?

2. Q: Is there a unique person in the blue region?
(Label this person 1)

3. Q: Is person 1 carrying something?

4. Q: Is person 1 female?

5. Q: Is person 1 walking on a sidewalk?

6. Q: Is person 1 interacting with any other object?

9. Q: Is there a unique vehicle in the yellow region?
( Label this vehicle 1)

10. Q: Is vehicle 1 light-colored?

11. Q: Is vehicle 1 moving?

12. Q: Is vehicle 1 parked and a car?

14. Q: Does vehicle 1 have exactly one visible tire?

15. Q: Is vehicle 1 interacting with any other object?
17. Q: Is there a unique person in the red region?

18. Q: Is there a unique person that is female in the red region?
19. Q: Is there a person that is standing still in the red region?

20. Q: Is there a unique person standing still in the red region?
(Label this person 2)

23. Q: Is person 2 interacting with any other object?

24. Q: Is person 1 taller than person 27

25. Q: Is person 1 closer (to the camera) than person 27

26. Q: Is there a person in the red region?

27. Q: Is there a unique person in the red region?
(Label this person 3)

36. Q: Is there an interaction between person 2 and person 37

37, Q: Are person 2 and person J talking?
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Deep Learning IRL
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Selt-Driving Cars

——
-
".

comp150d¢9 Tufts DeepTesla 72



Product Search

comp150d| €=

Tufts GrokStyle 73



Auto-tagging

Predicted Tags

north america DOIITICS DUSINess
leader finance commerce
government meeting conference
group

Comp150d|I“ft§ Clarifai 74



Medical Research

Train —
whole slide image
Test |
whole slide image patches tumor prob. map
comp150di§&9 Tufts PathAl 75



Image (Generation

Generated results

Sketch + Color

comp1 50dITUftS Scribbler 76



What is this class about?




Course Description

Learned Representations

Obje

CNN

Weakly Supervised and
Unsupervised CNNs

Recu

o Siamese / Ranking / Triplet
ct Proposals Networks

detection and segmentation « Co-gttention models

e Residual Nets

rrent Neural Nets and Long- * Ensemble methods

Shor

- Term Memory Networks
* Reinforcement Learning

Generative Networks

-
)

A

comp150dl '“' TUftS
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Preparation

 Programming experience

* Python, Matlab
* Math

* Linear Algebra, Basic Calculus, Probability
 Machine Learning

o Computer Vision

comp150di§&9 Tufts

79



Step 1: Datasets

comp150dl| %TUftS



fl- k L) :—.'!t;."'::: N 8& 'Iafehhpglr-eek :_;J __=
lc r from YAHOO!

Home You Organize & Create Contacts Groups Explore Upload
Search Photos Groups People
P Sy TS TR ST e T : Full Text | Tages On!
Everyone'sUploads ~~ |»| indigobuntng | Advanced Sea?ch 2
Sort: Relevant Hecent Interesting View: Small Medium @ Detail

From dwaynejava

From OwmanSA From Captain. ..

From Daves

From Jim Adams. .. FromJm Adame...

From jeffcrafter From dwaynejava From Bra Nan From Dave 2x

From hart_curt From KirkH1

From DaveS..

From iomelizab Fromiceberg_c..

' .

From MomOnTheR. R N From kenhs5T71 _ -
From MoGoy From DansPhotndrt

v R M From Dave 2x
From Bird Man... : : &
From Birdss

From Chr=ian From Dan and

Image credit: Flickr.com



6000 images - 100s of
from flickr.com BU||d| ng dataSEtS training images

Annotators

amazonmechanical turk

Is there an Indigo bunting in the image! | ;

Slide credit: Welinder et al
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v Instance segmentation
v Non-iconic Images

http://mscoco.org



* 330,000 images

* >2 million instances (700k people)

* Every instance is segmented

* /7.7 instances per image (3.5 categories)

http://mscoco.org



Beyond detection

two giraffe standing next to each other in front of a wooden fence.
two giraffes standing in the dirt near a gate.
‘/ Se ntences two giraffes stand by a food box awaiting the goods.
two giraffes are standing next to a wooden fence.
two giraffes standing alone by a picket fence.

Y

~'_.-‘-

Collecting Image Annotations Using Amazon’s

Mechanical Turk, C. Rashtchian, P. Young, M. Hodosh, J.
Hockenmaier, NAACL HLT Workshop on Creating Speech and
Language Data with Amazon’s Mechanical Turk, 2010

...

http://mscoco.org



Beyond detection

v Keypoints
(provided by Facebook)

http://mscoco.org



MS COCO Challenges at ICCV 2015

Microsort COCO =

O 1 Plce N

£ {

Common Objects in Contex Sl

 Detection
* Segmentation

e
én".‘.:_

89



Evaluation Metrics

Average Precision (AP):

AP
AploU=.50 s
aAploU=.75 % AP at IoU=.50
% AP at IoU=.75
Challenges Score: AP

- AP Is averaged over multiple
loU values between 0.5 and
0.95 (and categories, size). —

- More comprehensive metric
than the traditional AP at a
fixed loU value (0.5 for Pascal ).

(PASCAL VOC metric)
(strict metric)

loU =0.7

AP at IoU=.50:.05:.95 (determines challenge winner)

loU =0.9
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Evaluation Metrics

AP Across Scales:

APsmall
. % AP for small objects: area < 327
APmedlum . ' 5 5
large % AP for medium objects: 32 < area < 96
AP % AP for large objects: area > 967

Other Scores: Size AP

* AP is averaged over small (A <32 x 32), medium (32x 32 < A < 96 x 96) and
large (A > 96 x96) iInstances of objects.

> 96x96

[P [ 3 S '
s et o —— £ -~ 2]
- Vet T oy e — -~
. v = e
eid 2 . — - =
. / ' ¥ ’
A -
-
A

32x32 < A < 96x96

-y v ol

< 32x32
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Evaluation Metrics

Average Recall (AR):

ARmax=l ' . .

% AR gilven 1 detection per image
ARmax=l 0 o , , _

% AR given 10 detections per image
ARmax=l 00 o

AR given 100 detections per 1image
AR Across Scales:

ARsmall % AR for small objects: area < 32°

AR % AR for medium objects: 32% < area < 967

ARlarge % AR for large objects: area > 967
Other Scores: AR

 Measures the maximum recall over a fixed number of detections
allowed in the image of 1, 10, 100.

* AR is averaged over small (a <32 x 32), medium (32x 32 < A < 96 x 96) and
large (A > 96 x96) Instances of objects.
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60%

50% 1

40%

30% 1

20% 1

10% -

Detection Leaderboard (ll)

Object Localization can improve

W AP@0.5

19% AP | objects correctly

detected but not
well localized
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BBox detections and loU

Also hard for humans

loU=0.5 loU =0.7 loU =0.95
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BBox detections and loU

Also hard for humans

loU=0.5 loU =0.75 loU =0.95
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45%

30%

15%

0% -

Performance Breakdown (l)

COCO AP varies across supercategories and size

60%

30%

0%

60%

30%

0%

60%

30%

0%

electronic

—— kitchen

—+— vehicle

—— accessory — animal appliance
—— food furniture indoor
|
I 4
}
—— outdoor" —— person/{ —— sports
S M L S M S M L

96



Bounding Box Detection Errors ()

What type of errors are algorithms making?

AP @ loU = [0.5; 0.75]

B AP @louU = 0.1

O
o¢

precision
O

QO
N

O
»

N

0

399
589
682
695,
713
870
1.00]

C75
C50
Loc
Sim
Oth
BG
FN

- Super-category FP removed

Category FP removed

Background FP removed

FN errors are removed

MSRA

overall-all-all

0

0.2

0.4

[1] - Hoiem, Derek et al., “Diagnosing error in object detectors.”, ECCV 2012.

0.6 0.8
recall

[2] - Dollar, Piotr - https://github.com/pdollar/coco
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https://github.com/pdollar/coco

Bounding Box Detection Errors (ll)

AP @ loU = [0.5; 0.75]

- Super-category FP removed - Background FP removed

- AP @ loU =0.1 Category FP removed FN errors are removed

indoor-book-small indoor-book-medium

indoor-book-large

1 1
0.8 0.8 0.8
506 506 < 0.6
(@) O S
5 0.4 —1[.014] C75 504 [102] C 5
S 0. _ & 0.4| [ ][102]C75 S 0.4
][.114] C50 [ ][.294] C50 = %{Zigé} 828
I [.398] Loc I [.477] Loc I [.548] Loc
0.2 I [.399] Sim 0.2 I [.478] Sim B[.570] Sim
1[.402] Oth “ | |[21[.485] Oth 0.2/ | =3[ 630] Oth
I [.653] BG I [.941] BG I [.980] BG
|\:|[1 .00] FN [[1.00] FN [1.00] FN
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 % 05 0.4 0.6 0.8 ]
recall recall

recall
Results from MSRA team. 98



Some success cases ...

99

Results from FAIRCNN team.



... and some failures

rartic lig

an
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Results from FAIRCNN team.



