Lecture 10:
Training CNNs

Thursday March 2, 2017

comp150dI f::'rufts

Announcements!

Final Project proposals due this Today
| will be out of town next week. Rishit will lead class discussions.
Next paper: March 7 You Only Look Once: Unified, Real-Time Object

Detection. If this paper seems too deep or confusing, look at Fast R-CNN,
Faster R-CNN

comp150dI (‘::'I’ufts

Opportunity: Google Brain Residency

What Is The Brain Residency Program?

The Google Brain Residency Program is a one-year intensive residency program
focused on Deep Learning. Residents will have the opportunity to conduct cutting-
edge research and work alongside some of the most distinguished deep learning

scientists within the Google Brain team. To learn more about the team and what we
do, visit g.co/brain

- Email contact for questions: brain-residency@google.com

- For more information on the Residency Program, check out our website at g.co/
brainresidency

- More recently, we published a blog post on the Google Research Blog where we
discuss updates on current Residents’ progress and our program focus for 2017.

comp150d| {‘:‘}Thfts

http://g.co/brain
mailto:brain-residency@google.com

Data Augmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ‘(.:}Irufts

Data Augmentation

Compute

oSS
/'

> | CNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @'I‘ufts S

Data Augmentation

Compute

oSS
/'

Transform

* Original slides borrowed from Andrej Karpathy Imag e
and Li Fei-Fei, Stanford cs231n comp150al @mfts 6

Data Augmentation

- Change the pixels without
changing the label

4 What the
- Train on transformed data ' computer
sees

- VERY widely used

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @,rufts

Data Augmentation

1. Horizontal flips

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al Bmfts

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @m

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @'rufts

10

Data Augmentation
2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @'I‘ufts

11

Data Augmentation

2. Random crops/scales

Training: sample random crops / scales
ResNet:

1. Pick random L in range [256, 480]

2. Resize training image, short side = L

3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| G'I‘ufts

12

Data Augmentation
3. Color jitter

Simple:
Randomly jitter contrast

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'Ihfts

13

Data Augmentation
3. Color jitter

Simple:
Randomly jitter contrast

Complex:

1. Apply PCA to all [R, G, B]
pixels in training set

2. Sample a “color offset”
along principal component
directions

1. Add offset to all pixels of a
training image
(As seen in [Krizhevsky et al.

* Original slides borrowed from Andrej Karpathy comp150d m Res N et, etC)
and Li Fei-Fei, Stanford cs231n NI 14

Data Augmentation
3. Color jitter

Random mix/combinations of :

- translation

- rotation

- stretching

- shearing,

- lens distortions, ... (go crazy)

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

A general theme:

1. Training: Add random noise
2. Testing: Marginalize over the noise

a) Standard Newral Nt

. Dropout
Data Augmentation
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @mfts

Batch normalization,
Model ensembles

16

Data Augmentation: Takeaway

- Simple to implement, use it
- Especially usetul for small datasets
- Fits into framework of noise / marginalization

* Original slides borrowed from Andrej Karpathy e !
and Li Fei-Fei, Stanford cs231n comp150d| ‘-'mfts

17

Transfer Learning

“You need a lot of a data if you want
to train/use CNNs”

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

18

Transter Learning

“You need a lot of a data if you want
to train/use CNNs”

Not True

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150di C_}Mts

19

Transfer Learning with CNNs

image

we 1. Train on
= |Magenet

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dI @'I‘ufts

20

Transfer Learning with CNNs

image

e 1. Train on

conv-64

mees . |Magenet

conv-128
conv-128

image

2. Small
\dataset:
feature
extractor

> Freeze
these

/

“— Train

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

this
comp150dl! ﬁl‘ufts

21

Transfer Learning with CNNs

image

e 1. Train on

conv-64

mees . |Magenet

conv-128
conv-128

image

2. Small

\dataset:
feature

extractor

> Freeze
these

J

“— Train

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

this
comp150dl! C-Q'Ihfts

3. Medium

image
e | dataset:

== | finetuning

— >

oo 22 Freeze

e these

— more data = retrain
— more of the network (or
conv-512 all of it)

maxpool

cee [Train

= this

22

Transfer Learning with CNNs

image

e 1. Train on

conv-64

mees . |Magenet

conv-128
conv-128

image

2. Small

\dataset:
feature

extractor

> Freeze
these

J

“— Train

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

this
comp150dl! C-Q'Ihfts

3. Medium

image
e | dataset:

== | finetuning

— >

oo 22 Freeze

e these

— more data = retrain
— more of the network (or
conv-512 all of it)

maxpool

cee [Train

= this

tip: use only ~1/10th of the original
learning rate in finetuning top layer, and
~1/100th on intermediate layers

23

CNN Features off-the-shelf: an Astounding Baseline for Recognition

[Razavian et al, 2014]

DeCAF: A Deep
Convolutional Activation
Feature for Generic Visual
Recognition

[Donahue*, Jia*, et al.,

2013]
: 5
DeCAF, DeCAF; 1 "
LogReg 4094+03 0sL=03 L2
SVM P03 066203
Xiao et al. (2010) is0
O »
"0, 6'/@0[,
%Q blaeo q&(
Q{; iO o‘l‘
Z, Yay
!
* Original slides borrowed from Andrej Karpathy 24
and Li Fei-Fei, Stanford cs231n comp150di gm

conv-64 W
maxpool \
maore

maxpool generic

conv-256

e more
conv-512 Spe ific

conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

very similar
dataset

very little data ?

quite a lot of ?
data

comp150d| f_’}'lhfts

very different
dataset

25

image

conv-64

conv-64 W

maxpool \
com-128 more
conv-128)
maxpool g eneric

conv-256
conv-256

maxpool more
conv-512 Spe flC

conv-512
maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

very similar very different
dataset dataset
very little data Use Linear ?
Classifier on top
layer
quite a lot of Finetune a few ?
data layers

comp150d| (_’}'Ihfts

26

image
conv-64
conv-64
maxpool

conv-128
conv-128
maxpool
conv-256
conv-256
maxpool

conv-512
conv-512

maxpool

conv-512
conv-512

maxpool

FC-4096
FC-4096
FC-1000
softmax

'\
more
generic

more
spegific

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

very similar
dataset

very little data Use Linear
Classifier on top

layer
quite a lot of Finetune a few
data layers

comp150dI (‘::'I’ufts

very different
dataset

You’re in
trouble... Try
linear classifier
from different
stages

Finetune a
larger number of
layers

27

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)
Image Captioning:
CNN + RNN

“straw” “hat” END

Yt

Ill

Wi

Object \ | J
Detection A= = START “straw” “hat”
(Faster R-

CNN)

* Original slides borrowed from Andrej Karpathy] 28
and Li Fei-Fei, Stanford cs231n comp150d| {(_?'I\lfts

Xy

Transfer learning with CNNs is pervasive...

(it's the norm, not an exception)
Image Captioning:
CNN + RNN

“straw” “hat” END

Yt

CNN pretrained

on ImageNet = ;_ W
A/ H',l,l,’
Object
Detection START “straw” “hat”
(Faster R-
CNN)

* Original slides borrowed from Andrej Karpathy ; 29
and Li Fei-Fei, Stanford cs231n comp150d| le‘ufts

Transfer learning with CNNs is pervasive...
(it's the norm, not an exception)

Image Captioning:

CNN + RNN

“straw” “hat” END
Y

"""*

CNN pretrained

on ImageNet Won

S %N he
T A/ A 0 CNNy -
Objec sedllic & o
Detection —— START “straw” “hat”
(FaSter R- Word vectors
CNN) pretrained from
word2vec

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| G'rufts

30

Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a
big ConvNet there.
2. Transfer learn to your dataset

Caffe ConvNet library has a “Model Zoo” of pretrained

models:
https://github.com/BVL C/caffe/wiki/Model-Z00o

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

31

https://github.com/BVLC/caffe/wiki/Model-Zoo

All About Convolutions
Part |; How to stack them

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di @T‘u‘fts

32

The power of small filters

Suppose we stack two 3x3 conv layers (stride 1)
Each neuron sees 3x3 region of previous activation map

—y — — [
-~ - - -~ - -
-~ "
-— -
- -— — - - — -— — - 3
— -
Input First Conv Second Conv
* Original slides borrowed from Andrej Karpathy comp150dl {‘*e'l\lfts

and Li Fei-Fei, Stanford cs231n

33

The power of small filters

Question: How big of a region in the input does a neuron on
the second conv layer see”

—y — — [
-~ - - -~ - -
-~ "
-— -
» _ - — — _ — - —-— —
| — -
Input First Conv Second Conv
* Original slides borrowed from Andrej Karpathy comp150dl {‘*e'l\lfts

and Li Fei-Fei, Stanford cs231n

The power of small filters

Question: How big of a region in the input does a neuron on
the second conv layer see”
Answer: 5 X 5

_— —y — - - - — _—y — - - -
-~ i
- -— — - - [N — -— — - 3 -
| — —-—
Input First Conv Second Conv

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

36

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

Answer: 7 X 7

* Original slides borrowed from Andrej Karpathy e
and Li Fei-Fei, Stanford cs231n comp150d| ‘-VTufts

37

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

Three 3 x 3 conv
X gives similar
Answer: 7 X 7 representational
power as a single
7/ x 7 convolution

* Original slides borrowed from Andrej Karpathy e
and Li Fei-Fei, Stanford cs231n comp150d| ‘-VTufts

38

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

39

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters

Number of weights: Number of weights:

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_'Mts

40

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C2 =3xCx(B83x3xC)=27C?

* Original slides borrowed from Andrej Karpathy o} 41
and Li Fei-Fei, Stanford cs231n comp150d| C.'mfts

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC) =49 C2 =3xCx(B83x3xC)=27C?

v\ /
Fewer parameters, more nonlinearity = GOOD

* Original slides borrowed from Andrej Karpathy 42
and Li Fei-Fei, Stanford cs231n comp150d| ‘(.:}Irufts

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC)=49C(Cz2 =3XxCx(3x3xC)=27C2
Number of multiply-adds: Number of multiply-adds:

* Original slides borrowed from Andrej Karpathy o 43
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC)=49C(Cz2 =3XxCx(3x3xC)=27C2
Number of multiply-adds: Number of multiply-adds:
=(HxWxC)x(7x7xC) =3X(HXxWxC)x(83x3xQC)
= 49 HWC? = 27 HWC?

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

44

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters three CONV with 3 x 3 filters
Number of weights: Number of weights:
=Cx(7x7xC)=49C(Cz2 =3XxCx(3x3xC)=27C2
Number of multiply-adds: Number of multiply-adds:

= 49 HWC? = 27 HWC?

v . .
AN Less compute, more nonlinearity = GOOD

* Original slides borrowed from Andrej Karpathy

. 45
and Li Fei-Fei, Stanford cs231n comp150d| C_}Mts

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 17

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

46

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 17

(note: 1x1 filters sum across all channels of the input)

Hx W x C 1. “bottleneck” 1 x 1 conv

to reduce dimension
Conv 1x1, C/2 filters ¢

HxWx(C/2)

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

47

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 17

(note: 1x1 filters sum across all channels of the input)

Hx W x C 1. “bottleneck” 1 x 1 conv

to reduce dimension
Conv 1x1, C/2 filters ¢

2. 3x 3 conv at reduced
HXWx(C/2) dimension
Conv 3x3, C/2 filters {
HxWx(C/2)
* Original slides borrowed from Andrej Karpathy comp150dl c.émfts

and Li Fei-Fei, Stanford cs231n

48

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 17
(note: 1x1 filters sum across all channels of the input)
H x W x C 1. "bottleneck™ 1 x 1 conv

to reduce dimension
Conv 1x1, C/2 filters ¢

2. 3 x 3 conv at reduced
HxWx(C/2) di>r<nensio;1/]

Conv 3x3, C/2 filters {
Hx W x (C/2) 3. Restore dimension

| with another 1 x 1 conv
Conv 1x1, C filters v

H x W X C [Seen in Lin et al, “Network in Network”,

GoogleNet, ResNet]

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

49

The power of small filters
Why stop at 3 x 3 filters? Why not try 1 x 17

HxWxC

: | Bottleneck
Conv 1x1, C/2 filters v sandwich H s W x C
HxWx (C/2)
Conv 3x3, C/2 filters v ‘ Conv 3x3, C filters
HXxWx(C/2) | Single v
| 3 x 3 conv HxWxC
Conv 1x1, C filters v _
HxWxC -~

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| f}TuftS

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 17 More nonlinearity,
fewer params,
less compute!

HxWxC

Conv 1x1, C/2 filters | 25 C*
’ v parameters HxWxC

HxWx(C/2)
Conv 3x3, C/2 filters v ‘ Conv 3x3, C filters

HxWx(C/2) |9C? < v

| | parameters HxWxC
Conv 1x1, C filters v _
HxWxC -~

e et e Ferpety compisod €3 Tufts 51

The power of small filters

Still using 3 x 3 filters ... can we break it up?

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C.'mfts

52

The power of small filters

Still using 3 x 3 filters ... can we break it up?

HxWxC
- |
Conv 1x3, C filters v

HxWxC
Conv 3x1, C filters +

HxWxC

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C.'mfts

The power of small filters

Still using 3 x 3 filters ..

HxWxC
- |
Conv 1x3, C filters v

HxWxC
Conv 3x1, C filters +

HxWxC

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

. can we break it up?

6 C2

\

9 C2
parameters

comp150dl! (_Q'I'ufts

parameters

<

More nonlinearity,
fewer params,
less compute!

/—HxWxC

Conv 3x3, C filters
\ 4

HxWxC
\—

54

INCEPTION TMODULES

aka GooglLeNet

p 00 L (“ * figure courtesy Aaditya Parkash

The power of small filters

Latest version of GooglLeNet incorporates all these ideas

Filter Concat

Ix3
{
Ix3 3x3
1 1 1
>x1 Pool 1x1

Filter Concat

nx1 ' "'.

1

1xn

T
nx1 nx1

I L]

1xn 1xn i

1 1 1 \
1x1 1x1 Pool 1x1

- T - =

Base

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”

comp150d| @'I‘ufts

How to stack convolutions: Recap

Replace large convolutions (5 x 5, 7 x 7) with stacks of 3
X 3 convolutions

1 x 1 “bottleneck” convolutions are very efficient

Can factor N x N convolutions into 1 x Nand N x 1

All of the above give fewer parameters, less compute,
more nonlinearity

* Original slides borrowed from Andrej Karpathy e !
and Li Fei-Fei, Stanford cs231n comp150d| ‘-mets 57

All About Convolutions
Part |I: How to compute them

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @'I‘ufts

58

Implementing Convolutions: im2col

There are highly optimized matrix multiplication routines
for just about every platform

Can we turn convolution into matrix multiplication?

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

59

Implementing Convolutions: im2col

Feature map: Hx W x C Conv weights: D filters, each Kx K x C

% A

3 4

/

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150di C_}Mts

Implementing Convolutions: im2col

Feature map: Hx W x C Conv weights: D filters, each Kx K x C
x A
///I [
® 6 o
v

Reshape Kx K x C
receptive field to

|| column with K2C
elements

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150di C_}Mts

Implementing Convolutions: im2col

Feature map: Hx W x C Conv weights: D filters, each Kx K x C

7 A
7 4

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| (_}'I‘Ufts

Implementing Convolutions: im2col

Feature map: Hx W x C Conv weights: D filters, each Kx K x C

7 A
7 4

Elements appearing in
multiple receptive fields are
duplicated; this uses a lot of
memory

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)

* Original slides borrowed from Andrej Karpathy]
and Li Fei-Fei, Stanford cs231n comp150d| (_?Thfts

Implementing Convolutions: im2col

Feature map: Hx W x C

(K2C) x N matrix

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

Conv weights: D filters, each Kx Kx C

Reshape each filter to K2C row,
making D x (K2C) matrix

comp150d| G'Ihfts 64

Implementing Convolutions: im2col

Feature map: Hx W x C

(K2C) x N matrix

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

Conv weights: D filters, each Kx Kx C

A
4 \

® 6 o

[v |
[|
| I >
: : Matrix

Itipl

— MUtplY D x N result;
D x (K2C) reshape to output tensor
matrix
comp150dI C}'I‘ufts 65

template <typenane Dtype>

vold Convolut lonLayer<Dtype>: Forward_gpu{const vector<B8lob<Diype>*>& bottom,

vector<Blob<Dtype>">" top) {

for (

con

int 1 = 0; 1 < bottom.size(); ++1) {

st Dtype' bottom _data = bottom|i]->gpu_data();

Dtype* top_data = (“top)[1)->sutable_gpu_data().

type* col data = col buffer .sutable gpu data().

st Dtype* weight this->blobs_[0]->gpu_data();

Case study:
CONV forward in Caffe
library

+— mZ2col

“— matrix multiply: call to

CUBLAS

int weight _offset = M_ * K_;
INt col offset = K_ * N_;
int top offset = M_ * N_;
for (Int n ;n< num ; +en) {
1 _gpu(bottom_data + bottomi]->offser(n), channels_, helght
width ., kernel h , kernel w , pad h , pad w_, stride h , stride w ,
col_data);
or (int g = O: g < groun ++a) {
caffe_gpu_gemm<Dtype>(CbhblashoTrans, CbhblasNoTrans, M_, N_, K_,
(Otype)l., weight +» weight _offset * g, col _data ¢ col offset * g,
(Otype)o., top_data + (*top)[i)->offset(n) & top _offset * g).
)
Af (bias term) {
caffe_gpu_gesm<Dtype>(CblasnoTrans, CblasNoTrans, num_output_,
N_, 1, (Dtype)l., this->blobs_[1]->gpu_data(),
blas_multiplier Ipu_data(),
(Dtype)l., top data + (*top)[i)->offset(n));
’
}

* Origin

V-
™~ bias offset

al slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl @T‘ufts

Case study:
fast_layers.py from HW

Im2col

I matrix multiply:
] call np.dot
— (which calls BLAS)

* Original slides borrowed from Andrej Karpathy ; 67
and Li Fei-Fei, Stanford cs231n comp150d| c.a’rufts

Implementing convolutions: FFT

- Convolution Theorem: The convolution of fand g is
equal to the elementwise product of their Fourier

Transforms: F(f *g9) = F(f) - F(g)

- Using the Fast Fourier Transform, we can compute the
Discrete Fourier transform of an N-dimensional vector in
O(N log N) time (also extends to 2D images)

* Original slides borrowed from Andrej Karpathy e !
and Li Fei-Fei, Stanford cs231n comp150d| ‘-'mfts

68

Implementing convolutions: FFT

1. Compute FFT of weights: F(W)
2. Compute FFT of image: F(X)
3. Compute elementwise product: F(W) o F(X)

4. Compute inverse FFT: Y = F-1(F(W) o F(X))

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

69

Implementing convolutions: FFT

96
Yook 105
1 l.r.-ul -‘wuu
$I708 a0 i
'3.";: ﬁ!’;
> o
304 0y §
o 131072
s e)
%214 H —— 202044
225 216
$24288 % e $34048
Bus :.‘lzs 24 &
1/ 98 . 16% v 1 sn:: k
N " 1ot
peedup LGS é ——— ves §
— 2952 2007152
nasTas R AT
1 L »
LA b b
- o - o o - o O o
® 9] 3 T ® 2 ®» 3
) 3x3 kernels) 5x5 kernels
output siee output size

FFT convolutions get a big speedup for larger filters
Not much speedup for 3x3 filters =(

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

.........

output size

> 4
O

atchBae " rlrptPiare * nOupetMare

7x7 kernels

70

Implementing convolution: “Fast Algorithms”
Naive matrix multiplication: Computing product of two
N x N matrices takes O(N83) operations

Strassen’s Algorithm: Use clever arithmetic to reduce
complexity to O(Nleg2(7) ~ O(N2-81)

A= "\l'l Ar2 ~\Il = (A1 4+ Ay2) (B 4 B_:g_‘»'
.‘_y[!_’_r e | .
; \I-’ . 'A-’l + ‘A-' -’,Bi-'- (-‘l.l B .\11 + I\l; —_ I\I;‘. + :\l‘,'
.Bl‘l Bll: XI; — .A;.1|B] y BJ"'i ("l,_’ . l\l{ 4 Al".
B: .\I; — .A_»_,-|B_J]' Bll" ' ;
B."l B;’,.—' ‘ C’_’l = M, + I\I;
.\l,:: :-Al{+-‘\1_)l8.)3 C‘ ' . \I“ hl hl \I
v Cii Ci2 M; = (Az1 — A11)(By1 + By2) &t = T 2T 3+ M
(- p— {C‘l,l C‘. u’] .\l’,‘ = :-Al == .AJ_I:':[%;‘] + [3_} __l'

From Wikipedia

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_'Mts 71

Implementing convolution: “Fast Algorithms”

Similar cleverness can be applied to convolutions

Lavin and Gray (2015) work out special cases for 3x3

convolutions: P00
B 0 |] 0
(0 | 0]
. dy dy ds] |7° my + my + my ~
oyl : — - > - - |))
F(2,3) [“’l ds th [‘“ Mg = My = My : l]
g2 G |1 {1
! 91 / .. - 1
my = (dg - dz)gy "2 7 (dr + da) 2 \ i} 1 1 0]
my = [l’| — dy 192 ms = (d i I}c'ul 91+ 92 1 1
i3 (5] oy 2 o

Lavin and Gray, “Fast Algorithms for Convolutional Neural Networks”, 2015

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_'Mts

Implementing convolution: “Fast Algorithms”™

Huge speedups on VGG for small batches:

cuDNN F(2x2.3x3)
N1 msec TFLOPS | msec TFLOPS | SPeedup
T 1252 12| 555 703 | 226X
2 | 2036 383 | 989 789 | 206X
4| 10470 149 | 1772 881 | so1x
8 | 24121 129 | 3311 943 | 728x
16 | 203.09 307 | 6579 949 | 3.00x
32 | 23705 527 | 13236 943 | 1.79x
64 | 394.05 6.34 | 266.48 937 | 148X

Table 5. cuDNN versus F(2 x 2,3 x 3) performance on VGG
Network E with fp32 data. Throughput 1s measured in Effective
TFLOPS, the ratio of direct algorithm GFLOPS to run time.

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

cuDNN F(2x2.3x3)
N1 msec TFLOPS | msec TFLOPS | SPeedup
1| 1458 268 | 553 706 | 264X
2| 2094 373| 983 794 | 213X
410419 150 | 17.50 892 | 595X
8 | 241.87 129 | 3261 957 | 742X
16 | 204.01 306 | 6293 992 | 324X
32 | 236.13 529 | 123.12 1014 | 192X
64 | 39593 6.31 | 24298 1028 | 163X

Table 6. cuDNN versus F(2 x 2,3 x 3) performance on VGG
Network E with fpl6 data

comp150d| @'Ihfts

73

Computing Convolutions: Recap

- Im2col: Easy to implement, but big memory overhead
- FFT: Big speedups for small kernels

- "Fast Algorithms” seem promising, not widely used yet

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

74

Implementation Detalls

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| €_$'I‘Ufts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

" —

-~y o
yryrrent
' g
. [b
»

I

°
N

GEFORCEGTX "

comp150dI (_@'I‘ufts

76

Spot the CPU!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dI (_@'I‘ufts

77

Spot the CPU!

“central processing unit”

GEFORCEGTX

s l.l
SUL USSR

\vﬂ"‘ ",' :

' "'“'m‘ “

some AX1200i |

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| €.3'I‘Ufts

78

Spot the GPU!

“graphics processing

)
unit
e
X e " ' l
. — > “ yﬂ‘ﬁ .-'. ’
s AX1200i |
* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| c.a’rufts

79

Spot the GPU!

“graphics processing
unit”

GEFORCEGTX

o l'l

o > "'"“

some AX1200i |

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| c.a’rufts

80

<

NVIDIA

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

VS

comp150dI g‘_.’g Tufts

81

NVIDIA is much more
common for deep learning

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

82

GTC 2015:

Introduced new Titan X
GPU by bragging about
AlexNet benchmarks

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

TITAN X FOR DEEP LEARNING

Training AlexNet

compisodl £3Tufts

83

CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU

Many, slower cores (thousands)
Originally for graphics

Good at parallel computation

* Original slides borrowed from Andrej Karpathy]
and Li Fei-Fei, Stanford cs231n comp150d| (_?Thfts

84

GPUs can be programmed

- CUDA (NVIDIA only)
- Write C code that runs directly on the GPU
- Higher-level APls: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
- Similar to CUDA, but runs on anything
- Usually slower :(
- Udacity: Intro to Parallel Programming https://www.udacity.com/
course/cs344
- For deep learning just use existing libraries

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C.'mfts

85

https://www.udacity.com/course/cs344

GPUs are really good
at matrix multiplication:

B S— < GPU: NVIDA Tesla K40
1000 M""WA with cuBLAS

o)

I 'jr
il ¢ CPU: Intel E5-2697 v2
- W <4— 12 core @ 2.7 Ghz

- 0 1000 2000 3000 4000 Wlth MKL
Matrix Dimension (m=n=k)
Orginalslids bortowed fam Ancrej Karpathy compisoal (3 Tufts

86

GPUs are really good at convolution (CuDNN):

Caffe
(cuDNN) Caffe
: Caof::“ ’ (:;'L'N) 1.3x (cuDNN)
(<V] 1.2x
) 14x GPU) 13x Caffe Caffe
cu | ((GPU) (GPU)
11x
Caffe
(cpPU) (CPU)
| P—

All comparisons are against a 12-core Intel E5-2679v2 CPU @
2.4GHz running Caffe with Intel MKL 11.1.3.

* Original slides borrowed from Andrej Karpathy 87
and Li Fei-Fei, Stanford cs231n comp150al B.Ihfts

.........

Even with GPUs, training can be slow
VGG: ~2-3 weeks training with 4 GPUs
ResNet 101: 2-3 weeks with 4 GPUs

NVIDIA Titan Blacks image batch

~$1K each ;’:7 -_

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html

* Original slides borrowed from Andrej Karpathy

- 88
and Li Fei-Fei, Stanford cs231n comp150d (_?Thfts

http://torch.ch/blog/2016/02/04/resnets.html

Multi-GPU training: More complex

Model parallelism:
[] all workers train on same batch; []
| workers communicate as lroq.nontly__as 'y

netwoﬂ'(AMOWS.

Fully-connected
1

[
|

|

|

|

|

Convolutional

Alex Krizhevsky, “One weird trick for parallelizing convolutional neural networks”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @m

Google: Distributed CPU training

Parameter Server W = W~ ']AW

0000000
// 1] \\
Q0 OO OO

Model
Replicas

00 00 60
nE 8 8

Shards

Data parallelism

[Large Scale Distributed Deep Networks, Jeff
Dean et al., 2013]

* Original slides borrowed from Andrej Karpathy]
and Li Fei-Fei, Stanford cs231n comp150d| {(_?'I\lfts

Google: Distributed CPU training

..
. .

Paramater Sarver W' = W-AW -é =

0000000 i K
/11 \\

Model OO0 OO QA0 2 P X

w00 00 00 : :

e 8 B 2 ,.

Data parallelism :
P Model parallelism

[Large Scale Distributed Deep Networks, Jeff
Dean et al., 2013]

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| G'I‘ufts 91

Google: Synchronous vs Async

e ey
Paravater Devices)

Add)3

[Client 1+ (Update)

Client 3}-+(Update)«+-22
3) [Client 2}~ {Update)=+L2 A
[&oee Cevee 8 Bovice € [Client 1}——F>(Updm)<--a—\" w
ot] [MJ [sm,} | [Emm] [;m ...".'.“] [ss m;j}
Synchronous Data Parallelism =

Asynchronous Data Parallelism

Abadi et al, “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

92

Bottlenecks

to be aware of

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| g'lhfts

93

GPU - CPU communication is a bottleneck.
=>

CPU data prefetch+augment thread running
while

GPU performs forward/backward pass

* Original slides borrowed from Andrej Karpathy A
and Li Fei-Fei, Stanford cs231n comp150d| t-Vrrtlfts

94

Moving parts Iol

CPU - disk bottleneck

Hard disk is slow to read from

=> Pre-processed images
stored contiguously in files, read as
raw byte stream from SSD disk

\‘

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| (_E'I‘Ufts

95

GPU memory bottleneck

Titan X: 12 GB <- currently the max
GTX 980 Ti: 6 GB

e.g.
AlexNet: ~3GB needed with batch size 256

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."rllfts

96

Floating Point Precision

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| €_$'I‘Ufts

Floating point precision

- 64 bit “double” precision is default in a lot of programming

- 32 bit “single” precision is typically used for CNNs for performance

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

98

Floating point precision

- 64 bit “double” precision is default

. . A Tully-comnected neural network 1th an arbitrary number of hioder ayers,
|n a |Ot Of programmlng RelU nonlinecarities, and a softmax loss functiom. This will also implement
dropout an ' 4% O ons FOr A netlwork with ers,

- 32 blt “Single” preClSlon |S typlca”y (affine - [batch morm] - relu - [dropout]} x (L - 1) - affine - softmax

used for CNNS for performance i-:.n(‘“"i-'t‘.:ch-nniv:.?ri‘x‘i.lt1~:-'| and dropout are optiomal, and the (...)
- Including in your homework!

* Original slides borrowed from Andrej Karpathy ;
and Li Fei-Fei, Stanford cs231n comp150d| c.a’rufts

99

Floating point precision

- Prediction: 16 bit “half’

Library

Class Time (ms)

forward (ms)

backward (ms)

Nervana-fp16 92 29 62
precision will be the new ‘
standard
- Already supported in cuDNN S R e e

- Nervana fp16 kernels are the ey o T | e | ot
fastest right now - T

- Hardware support in next-gen CUONMRIHp16 (Torch) cudnn SpatisConvolkt
NVIDIA cards (Pascal)

- Not yet supported in Jorch Libary Time g} formard) Backomrd e

Nervana-fp16 vLay 283 85 197

Benchmarks on Titan X, from https://qgithub.com/

* Original slides borrowed from Andrej Karpathy
soumith/convnet-benchmarks 100

and Li Fei-Fei, Stanford cs231n

comp150d| ((.Q'I’ufts

https://github.com/soumith/convnet-benchmarks

Floating point precision

- How low can we go?

- Gupta et al, 2015

Train with 16-bit fixed point with stochastic rounding

CNNs on
MNIST

01

Training error

001

0.001 1
@0 20

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

WL =16
T T

A L A
0 60 80
Training epoch

Test erron%)

i . 05 L

100 120 ®0 20

Gupta et al, “Deep Learning with Limited Numerical Precision

comp150dI C-Q'Ihfts

WL =16
T 5 T ™
Round 10 nearest, FL 14
Round 10 nearest, FL 12
Swochastc rounding, FL 14—
Stwochastic rounding, FL 12 =
Floal e—

1 A - ' L

40 60 80 100 120
Training epoch

", ICML 2015
101

Floating point precision

- How low can we go?

- Courbariaux et al, 2015:
Train with 10-bit activations, 12-bit parameter updates

Courbariaux et al, “Training Deep Neural Networks with Low Precision Multiplications”, ICLR 2015

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d c—"mfts 102

Floating point precision

- How low can we go?

- Courbariaux and Bengio, February 9 2016:
- Train with 1-bit activations and weights!
- All activations and weights are +1 or -1
- Fast multiplication with bitwise XNOR
- (Gradients use higher precision)

Courbariaux et al, “BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1”, arXiv 2016

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d c-"mfts 103

Implementation details: Recap

GPUs much faster than CPUs
Distributed training is sometimes used
- Not needed for small problems
Be aware of bottlenecks: CPU / GPU, CPU / disk
Low precison makes things faster and still works
- 32 bit is standard now, 16 bit soon

* Original slides borrowed from Andrej Karpathy e !
and Li Fei-Fei, Stanford cs231n comp150d <-'mfts 104

Recap

Data augmentation: artificially expand your data

Transfer learning: CNNs without huge data

All about convolutions

Implementation details

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d c—"mfts 105

TensorFlow

https://www.tensorflow.org

* Original slides borrowed from Andrej Karpathy] 106
and Li Fei-Fei, Stanford cs231n comp150d| (_?Thfts

https://www.tensorflow.org

TensorkFlow

From Google

Very similar to Theano - all about computation graphs

Easy visualizations (TensorBoard)

Multi-GPU and multi-node training

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_vmfts 107

TensorFlow: Two—Laer Net

ter flow 14§

ranan(D,

rancn(y,

train step,

{x

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 108

TensorkFlow: Tvvo—La Net

np

Create placeholders for
data and labels: These
will be fed to the graph

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 109

TensorkFlow: Tvvo—La Net

n

Create Variables to hold e {}Z":_f;.,.i';‘:-»]-:f‘i:‘j_.TJI
weights; similar to Theano LD
shared variables

Initialize variables with

numpy arrays

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 110

TensorkFlow: Tvvo—La Net

nuspy np

Forward: Compute scores, _——
probs, loss (symbolically)

rilearning rate

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 111

TensorkFlow: Tvvo—La Net

nuspy np

Running train_step will — S kEEEEae R
use SGD to minimize loss Ao Ut

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 112

TensorkFlow: Two—Lar Net

n DYy np

Create an artificial dataset; e
y is one-hot like Keras ———

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 113

TensorFlow: Two—Laer Net

ter flow 14§

ranan(D,

ranani(¥,

Actually train the model

train step,

{x

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 114

TensorFlow: Tensorboard

Tensorboard makes it easy to visualize
what’s happening inside your models

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 115

TensorFlow: Tensorboard

Tensorboard makes it easy to
visualize what’s happening
inside your models

Same as before, but now we
create summaries for loss and
weights

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 116

TensorFlow: Tensorboard

Tensorboard makes it easy to
visualize what’s happening inside
your models

Create a special “merged”
variable and a SummaryWriter\
object

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 117

TensorFlow: Tensorboard

Tensorboard makes it easy to
visualize what’s happening inside
your models

In the training loop, also run
merged and pass its value to the
writer

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 118

TensorFlow: Tensorboard

.

0.0600
¥4 Regex flter loss 0.0800
B e 0.0000
D —
[C] Spinon underscores loss .
[[] Data download links 2,060
120 £.0600
Horlzomal Axis 800 0000 2000 4000 60.00 8OO0 00
@00
_ RELATIVE WALL
000 w2
.e 0000 2000 4000 6000 £000 1000
Runs w2
.
0500
0.3

Start Tensorboard server, and we get graphs! ~ “»

0000 2000 4000 60.00 8000 1000

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmﬁs 119

TensorFlow: TensorBoard

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 120

TensorFlow: TensorBoard

Add names to placeholders
and variables

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 121

TensorFlow: TensorBoard

Add names to placeholders and
variables

Break up the forward pass with
name scoping

* Original slides borrowed from Andrej Karpathy comp150d| ‘O}Mts

and Li Fei-Fei, Stanford cs231n 122

TensorFlow: TensorBoard

Trams
" gradients - (wi ,| v el
w7 gradien -~
o
[w2 ' o
loss i
" scores

Tensorboard shows the graph!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dI (__Q'Ihfts

GradientDescent

123

TensorFlow: TensorBoard

wl

w2

Tensorboard shows the graph!

Name scopes expand to show
individual operations

* Original slides borrowed from Andrej Karpathy o}
and Li Fei-Fei, Stanford cs231n comp150d| C_VMS 124

TensorFlow: Multi-GPU

[Pavweer Deverin

[Mb»;;}:_?_l i
iz i

w
fmosel}
el

. S — Synchronous Data Parallelism
Data parallelism: i
(Client 3 ot 22
synchronous or asynchronous m,%%)
|Cloentl L\ = tmt) [L3
imwi] {;mz ;Mﬂ
@ | Jao | |ao

"
-l

Asynchronous Data Parallelism

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al Bmfts 125

TensorFlow: Multi-GPU

Data parallelism: Model parallelism:
synchronous or asynchronous Split model across GPUs
[leamsmy)] o
==))

“over k) e ¥ T) Client

(Coert jr@pdste) | |imodeli | | imodel: | | model

. Jé @ é) Device 3 ; o)
@ " @_\ C C C} C C
Synchronous Data Parallelism \ J
(Cilent 3;@ &P (Device 2 1
~ . A B B B;)‘ B BJ
(Client 2}-—@4- @\
Client 1)-+(Update) ..L‘ _— _— \)
752 ENCSO)
E pE — .
’ C ’ Asynchronous Data Parallelism
* Original slides borrowed from Andrej Karpathy comp150d| @'ﬁlﬁs 196

and Li Fei-Fei, Stanford cs231n

TensorFlow: Distributed

Single machine: Many machines:
Like other frameworks Not open source (yet) =(

1
. 1
smgle ks ! clnent master
SRNERRE: R $ 00 moosssnas-e : process rocess
client '——! master ' ‘°“'°" p
M s session . _ _ _ _______ !
1 execute
1 subgraph
execute :
subgraph '
' worker worker worker
- w orker """""""""" ' process 1 process 2 process 3
1
............................ ' (GPu] (CPUs [GPur] [CPUo) | [GPUL) [CPUG)
\ J 1
]
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di @mfts 127

TensorFlow: Pretrained Models

- You can get a pretrained models here:
- https://github.com/tensorflow/models

- Has inception, resnet, some different autoencoders

* Original slides borrowed from Andrej Karpathy ?
and Li Fei-Fei, Stanford cs231n comp150d| (_}Mts 128

https://github.com/tensorflow/models

TensorFlow: Pros / Cons

+/-) Distributed models, but not open-source yet
-) Slower than other frameworks right now

-) Much “fatter” than Torch; more magic
-) Not many pretrained models

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d c-'rl‘llfts 129

Torch

http://torch.ch/docs/getting-started.html

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @T‘ufts 130

http://torch.ch/docs/getting-started.html

Torch Overview

- From NYU + IDIAP
- Written in C and Lua
- Used a lot a Facebook, DeepMind

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d| c."mfts

131

Torch: Pretrained Models

- loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others

https://github.com/szagoruyko/loadcaffe

- Goog LeNet V1: https://github.com/soumith/inception.torch
- GOOgLeNet V3: https://github.com/Moodstocks/inception-v3.torch

- ReSNet https://github.com/facebook/fb.resnet.torch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| €_$'I‘Ufts 132

https://github.com/szagoruyko/loadcaffe
https://github.com/soumith/inception.torch
https://github.com/Moodstocks/inception-v3.torch
https://github.com/facebook/fb.resnet.torch

Torch: Pros / Cons

(-) Lua
(-) Less plug-and-play than Catfte

You usually write your own training code
(+) Lots of modular pieces that are easy to combine
(+) Easy to write your own layer types and run on GPU
(+) Most of the library code is in Lua, easy to read
(+) Lots of pretrained models!
(-) Not great for RNNs

* Original slides borrowed from Andrej Karpathy e !
and Li Fei-Fei, Stanford cs231n comp150d <-'mfts 133

Theano

http://deeplearning.net/software/theano/

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @'I‘ufts 134

http://deeplearning.net/software/theano/

Theano Overview

From Yoshua Bengio’s group at University of Montreal

Embracing computation graphs, symbolic computation

High-level wrappers: Keras, Lasagne

Has Conditional flow (ifelse, switch)

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d c—"mfts 135

Theano: Pretrained Models

Best choice

-| Lasagne Model Zoo has pretrained common architectures:
- Ihttps://github.com/Lasagne/Recipes/tree/master/modelzoo

- AlexNet with Weights: https://github.com/uoguelph-mirg/theano_alexnet

- sklearn-theano: Run OverFeat and GooglLeNet forward, but no fine-
tun|ng? http://sklearn-theano.github.io

- caffe-theano-conversion: CS 231n project from last year: load
models and weights from caffe! Not sure if full-featured uuwsuitnun comiotans

caffe-theano-conversion

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| ‘(.:}Irufts 136

https://github.com/Lasagne/Recipes/tree/master/modelzoo
https://github.com/uoguelph-mlrg/theano_alexnet
http://sklearn-theano.github.io
https://github.com/kitofans/caffe-theano-conversion

Theano: Pros / Cons

+) Python + numpy

+) Computational graph is nice abstraction

+) RNNs fit nicely in computational graph

-) Raw Theano is somewhat low-level

+) High level wrappers (Keras, Lasagne) ease the pain
-) Error messages can be unhelpful

-) Large models can have long compile times

-) Much “fatter” than Torch; more magic

-) Patchy support for pretrained models

* Original slides borrowed from Andrej Karpathy 15041 £
and Li Fei-Fei, Stanford cs231n comp c-'rl‘llfts 137

Overview

Caffe
Language C++, Python
Pretrained Yes ++
Multi-GPU: Yes
Data parallel
Multi-GPU: No
Model parallel
Readable Yes (C++)

source code

Good at RNN No

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

Torch
Lua
Yes ++

Yes
cunn.DataParallelTable

Yes
focunn.ModelParallel

Yes (Lua)

Mediocre

comp150dI f::'rufts

Theano
Python
Yes (Lasagne)

Yes
platoon
Experimental

No

Yes

TensorFlow
Python
Inception

Yes

Yes (best)

No

Yes (best)

138

