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Training CNNs 
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Announcements!

- Final Project proposals due this Today

- I will be out of town next week. Rishit will lead class discussions. 

- Next paper: March 7 You Only Look Once: Unified, Real-Time Object 
Detection. If this paper seems too deep or confusing, look at Fast R-CNN, 
Faster R-CNN
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Opportunity: Google Brain Residency

What Is The Brain Residency Program? 
The Google Brain Residency Program is a one-year intensive residency program 
focused on Deep Learning. Residents will have the opportunity to conduct cutting-
edge research and work alongside some of the most distinguished deep learning 
scientists within the Google Brain team. To learn more about the team and what we 
do, visit g.co/brain 

- Email contact for questions: brain-residency@google.com 
-   For more information on the Residency Program, check out our website at g.co/

brainresidency  
-   More recently, we published a blog post on the Google Research Blog where we 

discuss updates on current Residents’ progress and our program focus for 2017.
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http://g.co/brain
mailto:brain-residency@google.com
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Data Augmentation
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Data Augmentation

5

Load 
image 
and 
label

“cat
”

CNN

Compute 
loss
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Data Augmentation

6

Load 
image 
and 
label

“cat
”

CNN

Compute 
loss

Transform 
image
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Data Augmentation 

- Change the pixels without 
changing the label  

- Train on transformed data 

- VERY widely used

What the 
computer 
sees
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Data Augmentation 
1. Horizontal flips
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Training: sample random crops / scales 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Data Augmentation 
2. Random crops/scales
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Training: sample random crops / scales 
ResNet: 
1. Pick random L in range [256, 480] 
2. Resize training image, short side = L 
3. Sample random 224 x 224 patch
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Data Augmentation 
2. Random crops/scales
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Training: sample random crops / scales 
ResNet: 
1. Pick random L in range [256, 480] 
2. Resize training image, short side = L 
3. Sample random 224 x 224 patch  

Testing: average a fixed set of crops 
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Data Augmentation 
2. Random crops/scales
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Training: sample random crops / scales 
ResNet: 
1. Pick random L in range [256, 480] 
2. Resize training image, short side = L 
3. Sample random 224 x 224 patch  

Testing: average a fixed set of crops 
ResNet: 
1. Resize image at 5 scales:  {224, 256, 384, 480, 640} 
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips 
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Data Augmentation 
2. Random crops/scales
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Data Augmentation 
3. Color jitter
Simple:  
Randomly jitter contrast
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Simple:  
Randomly jitter contrast

Complex: 

1. Apply PCA to all [R, G, B] 
pixels in training set  

2. Sample a “color offset” 
along principal component 
directions 

1. Add offset to all pixels of a 
training image

(As seen in [Krizhevsky et al. 
2012], ResNet, etc)

Data Augmentation 
3. Color jitter
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Random mix/combinations of : 
- translation 
- rotation 
- stretching 
- shearing,  
- lens distortions, …  (go crazy)

Data Augmentation 
3. Color jitter
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A general theme:  
1. Training: Add random noise 
2. Testing: Marginalize over the noise

Dropout
Data Augmentation

Batch normalization,  
Model ensembles
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Data Augmentation: Takeaway

- Simple to implement, use it 
- Especially useful for small datasets 
- Fits into framework of noise / marginalization

17
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Transfer Learning 

“You need a lot of a data if you want 
to train/use CNNs”
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Transfer Learning 

“You need a lot of a data if you want 
to train/use CNNs” 

Not True
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Transfer Learning with CNNs

1. Train on  
Imagenet
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Transfer Learning with CNNs

1. Train on  
Imagenet

2. Small 
dataset: 
feature 
extractor 

Freeze 
these 

Train 
this 
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Transfer Learning with CNNs

1. Train on  
Imagenet

3. Medium 
dataset: 
finetuning 

more data = retrain 
more of the network (or 
all of it)

2. Small 
dataset: 
feature 
extractor 

Freeze 
these 

Train 
this 

Freeze 
these 

Train 
this 
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Transfer Learning with CNNs

1. Train on  
Imagenet

2. Small 
dataset: 
feature 
extractor 

Freeze 
these 

Train 
this 

Freeze 
these 

Train 
this 

tip: use only ~1/10th of the original 
learning rate in finetuning top layer, and 
~1/100th on intermediate layers

3. Medium 
dataset: 
finetuning 

more data = retrain 
more of the network (or 
all of it)
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CNN Features off-the-shelf: an Astounding Baseline for Recognition 
[Razavian et al, 2014]

DeCAF: A Deep 
Convolutional Activation 
Feature for Generic Visual 
Recognition 
[Donahue*, Jia*, et al., 
2013]
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more 
generic

more 
specific

very similar 
dataset

very different 
dataset

very little data ? ?

quite a lot of 
data

? ?
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more 
generic

more 
specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

?

quite a lot of 
data

Finetune a few 
layers

?
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more 
generic

more 
specific

very similar 
dataset

very different 
dataset

very little data Use Linear 
Classifier on top 
layer

You’re in 
trouble… Try 
linear classifier 
from different 
stages

quite a lot of 
data

Finetune a few 
layers

Finetune a 
larger number of 
layers
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Transfer learning with CNNs is pervasive… 
(it’s the norm, not an exception)

Object 
Detection  
(Faster R-
CNN)

Image Captioning: 
CNN + RNN
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Transfer learning with CNNs is pervasive… 
(it’s the norm, not an exception)

Object 
Detection  
(Faster R-
CNN)

CNN pretrained 
on ImageNet

Image Captioning: 
CNN + RNN
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Transfer learning with CNNs is pervasive… 
(it’s the norm, not an exception)

Object 
Detection  
(Faster R-
CNN)

CNN pretrained 
on ImageNet

Word vectors 
pretrained from 
word2vec

Image Captioning: 
CNN + RNN
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Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images? 

1. Find a very large dataset that has similar data, train a 
big ConvNet there. 

2. Transfer learn to your dataset 

Caffe ConvNet library  has a “Model Zoo” of pretrained 
models: 
https://github.com/BVLC/caffe/wiki/Model-Zoo 

https://github.com/BVLC/caffe/wiki/Model-Zoo
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All About Convolutions  
Part I: How to stack them
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The power of small filters

Suppose we stack two 3x3 conv layers (stride 1) 
Each neuron sees 3x3 region of previous activation map

Input First Conv Second Conv
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Question: How big of a region in the input does a neuron on 
the second conv layer see?

Input First Conv Second Conv

The power of small filters
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The power of small filters

Question: How big of a region in the input does a neuron on 
the second conv layer see? 
Answer: 5 x 5

Input First Conv Second Conv



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 36

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an 
input region does a neuron in the third layer see?
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an 
input region does a neuron in the third layer see?

X

X

Answer: 7 x 7
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The power of small filters

Question: If we stack three 3x3 conv layers, how big of an 
input region does a neuron in the third layer see?

X

X

Answer: 7 x 7

Three 3 x 3 conv 
gives similar 
representational 
power as a single  
7 x 7 convolution
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 40

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 

three CONV with 3 x 3 filters 
Number of weights: 
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 
= C x (7 x 7 x C) = 49 C2 

three CONV with 3 x 3 filters 
Number of weights: 
= 3 x C x (3 x 3 x C) = 27 C2 
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 
= C x (7 x 7 x C) = 49 C2 

three CONV with 3 x 3 filters 
Number of weights: 
= 3 x C x (3 x 3 x C) = 27 C2 

Fewer parameters, more nonlinearity = GOOD



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 43

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 
= C x (7 x 7 x C) = 49 C2 

Number of multiply-adds:

three CONV with 3 x 3 filters 
Number of weights: 
= 3 x C x (3 x 3 x C) = 27 C2 

Number of multiply-adds:
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The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 
= C x (7 x 7 x C) = 49 C2 

Number of multiply-adds: 
= (H x W x C) x (7 x 7 x C) 
= 49 HWC2

three CONV with 3 x 3 filters 
Number of weights: 
= 3 x C x (3 x 3 x C) = 27 C2 

Number of multiply-adds: 
= 3 x (H x W x C) x (3 x 3 x C) 
= 27 HWC2



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 45

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters 
to preserve depth (stride 1, padding to preserve H, W) 

one CONV with 7 x 7 filters 
Number of weights: 
= C x (7 x 7 x C) = 49 C2 

Number of multiply-adds: 
= 49 HWC2

three CONV with 3 x 3 filters 
Number of weights: 
= 3 x C x (3 x 3 x C) = 27 C2 

Number of multiply-adds: 
= 27 HWC2

Less compute, more nonlinearity = GOOD
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?  
(note: 1x1 filters sum across all channels of the input)

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

1. “bottleneck” 1 x 1 conv  
to reduce dimension 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The power of small filters

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)
Conv 3x3, C/2 filters

1. “bottleneck” 1 x 1 conv  
to reduce dimension 

2. 3 x 3 conv at reduced 
dimension 

Why stop at 3 x 3 filters? Why not try 1 x 1?  
(note: 1x1 filters sum across all channels of the input)



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 49

The power of small filters

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

1. “bottleneck” 1 x 1 conv  
to reduce dimension 

2. 3 x 3 conv at reduced 
dimension 

3. Restore dimension  
with another 1 x 1 conv  

[Seen in Lin et al, “Network in Network”, 
GoogLeNet, ResNet]

Why stop at 3 x 3 filters? Why not try 1 x 1?  
(note: 1x1 filters sum across all channels of the input)
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The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C
Single  
3 x 3 conv

Bottleneck  
sandwich



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 51

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C

3.25 C2  

parameters

9 C2  

parameters

More nonlinearity, 
fewer params,  
less compute!
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The power of small filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?
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The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?

6 C2  

parameters

Conv 3x3, C filters

H x W x C
9 C2  

parameters

H x W x C

More nonlinearity, 
fewer params,  
less compute!
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aka GoogLeNet
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The power of small filters

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”
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How to stack convolutions: Recap
- Replace large convolutions (5 x 5, 7 x 7) with stacks of 3 

x 3 convolutions 
- 1 x 1 “bottleneck” convolutions are very efficient 
- Can factor N x N convolutions into 1 x N and N x 1 
- All of the above give fewer parameters, less compute, 

more nonlinearity

57
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All About Convolutions  
Part II: How to compute them
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Implementing Convolutions: im2col

59

There are highly optimized matrix multiplication routines 
for just about every platform 

Can we turn convolution into matrix multiplication?
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Implementing Convolutions: im2col

60

Feature map: H x W x C Conv weights: D filters, each K x K x C
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Implementing Convolutions: im2col

61

Feature map: H x W x C Conv weights: D filters, each K x K x C

Reshape K x K x C 
receptive field to 
column with K2C 
elements
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Implementing Convolutions: im2col

62

Feature map: H x W x C Conv weights: D filters, each K x K x C

Repeat for all columns to get (K2C) x N matrix 
(N receptive field locations)
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Implementing Convolutions: im2col

63

Feature map: H x W x C Conv weights: D filters, each K x K x C

Elements appearing in 
multiple receptive fields are 
duplicated; this uses a lot of 
memory

Repeat for all columns to get (K2C) x N matrix 
(N receptive field locations)
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Implementing Convolutions: im2col

64

Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix
Reshape each filter to K2C row, 
making D x (K2C) matrix
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Implementing Convolutions: im2col

65

Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix D x (K2C) 
matrix

D x N result; 
reshape to output tensor

Matrix 
multiply
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Case study:  
CONV forward in Caffe 
library 

im2col 

matrix multiply: call to 
cuBLAS 

bias offset
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Case study:  
fast_layers.py from HW 

im2col 

matrix multiply: 
call np.dot 
(which calls BLAS)
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Implementing convolutions: FFT
- Convolution Theorem: The convolution of f and g is 

equal to the elementwise product of their Fourier 
Transforms: 

- Using the Fast Fourier Transform, we can compute the 
Discrete Fourier transform of an N-dimensional vector in 
O(N log N) time (also extends to 2D images)

68
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Implementing convolutions: FFT
1. Compute FFT of weights: F(W)  

2. Compute FFT of image: F(X)  

3. Compute elementwise product: F(W) ○ F(X) 

4. Compute inverse FFT: Y = F-1(F(W) ○ F(X))

69
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Implementing convolutions: FFT

70

FFT convolutions get a big speedup for larger filters 
Not much speedup for 3x3 filters =( 

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation 
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Implementing convolution: “Fast Algorithms”

71

Naive matrix multiplication: Computing product of two  
N x N matrices takes O(N3) operations 
Strassen’s Algorithm: Use clever arithmetic to reduce 
complexity to O(Nlog2(7)) ~ O(N2.81)

From Wikipedia
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Implementing convolution: “Fast Algorithms”

72

Similar cleverness can be applied to convolutions 

Lavin and Gray (2015) work out special cases for 3x3 
convolutions:

Lavin and Gray, “Fast Algorithms for Convolutional Neural Networks”, 2015
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Implementing convolution: “Fast Algorithms”

73

Huge speedups on VGG for small batches:
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Computing Convolutions: Recap

- im2col: Easy to implement, but big memory overhead  

- FFT: Big speedups for small kernels  

- “Fast Algorithms” seem promising, not widely used yet

74
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Implementation Details
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Spot the CPU!
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Spot the CPU! 
“central processing unit”
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Spot the GPU! 
“graphics processing 
unit”
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Spot the GPU! 
“graphics processing 
unit”
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VS
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VS

NVIDIA is much more 
common for deep learning
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GTC 2015: 
Introduced new Titan X 
GPU by bragging about 
AlexNet benchmarks
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CPU 
Few, fast cores (1 - 16) 
Good at sequential processing 

GPU 
Many, slower cores (thousands) 
Originally for graphics 
Good at parallel computation
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GPUs can be programmed
- CUDA (NVIDIA only) 

- Write C code that runs directly on the GPU 
- Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc 

- OpenCL 
- Similar to CUDA, but runs on anything 
- Usually slower :( 

- Udacity: Intro to Parallel Programming https://www.udacity.com/
course/cs344 
- For deep learning just use existing libraries

85

https://www.udacity.com/course/cs344
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GPUs are really good  
at matrix multiplication:

GPU: NVIDA Tesla K40  
with cuBLAS

CPU: Intel E5-2697 v2 
12 core @ 2.7 Ghz 
with MKL
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GPUs are really good at convolution (cuDNN):

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 
2.4GHz running Caffe with Intel MKL 11.1.3.



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 88

Even with GPUs, training can be slow 
VGG: ~2-3 weeks training with 4 GPUs 
ResNet 101: 2-3 weeks with 4 GPUs

NVIDIA Titan Blacks 
~$1K each

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html 

http://torch.ch/blog/2016/02/04/resnets.html


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Multi-GPU training: More complex
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Alex Krizhevsky, “One weird trick for parallelizing convolutional neural networks”
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Google: Distributed CPU training

90

Data parallelism

[Large Scale Distributed Deep Networks, Jeff 
Dean et al., 2013]
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Google: Distributed CPU training
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Model parallelismData parallelism

[Large Scale Distributed Deep Networks, Jeff 
Dean et al., 2013]
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Google: Synchronous vs Async 
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Abadi et al, “TensorFlow: Large-Scale Machine Learning on Heterogeneous 
Distributed Systems”
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Bottlenecks 
to be aware of
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GPU - CPU communication is a bottleneck. 
=> 

CPU data prefetch+augment thread running 

while 

GPU performs forward/backward pass
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CPU - disk bottleneck 

Hard disk is slow to read from 

=> Pre-processed images  
stored contiguously in files, read as 
raw byte stream from SSD disk 

Moving parts lol
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GPU memory bottleneck 

Titan X: 12 GB <- currently the max 
GTX 980 Ti: 6 GB 

e.g. 
AlexNet: ~3GB needed with batch size 256 
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Floating Point Precision
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Floating point precision
- 64 bit “double” precision is default in a lot of programming 

- 32 bit “single” precision is typically used for CNNs for performance
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Floating point precision
- 64 bit “double” precision is default 

in a lot of programming 

- 32 bit “single” precision is typically 
used for CNNs for performance 
- Including in your homework!
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Floating point precision
- Prediction: 16 bit “half” 

precision will be the new 
standard 
- Already supported in cuDNN 
- Nervana fp16 kernels are the 

fastest right now 
- Hardware support in next-gen 

NVIDIA cards (Pascal) 
- Not yet supported in Torch

100Benchmarks on Titan X, from https://github.com/
soumith/convnet-benchmarks 

 

https://github.com/soumith/convnet-benchmarks
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Floating point precision
- How low can we go? 

- Gupta et al, 2015:  
Train with 16-bit fixed point with stochastic rounding

101

CNNs on 
MNIST

Gupta et al, “Deep Learning with Limited Numerical Precision”, ICML 2015
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Floating point precision
- How low can we go? 

- Courbariaux et al, 2015:  
Train with 10-bit activations, 12-bit parameter updates
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Courbariaux et al, “Training Deep Neural Networks with Low Precision Multiplications”, ICLR 2015
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Floating point precision
- How low can we go? 

- Courbariaux and Bengio, February 9 2016: 
- Train with 1-bit activations and weights! 
- All activations and weights are +1 or -1 
- Fast multiplication with bitwise XNOR 
- (Gradients use higher precision)
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Courbariaux et al, “BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1”, arXiv 2016
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Implementation details: Recap
- GPUs much faster than CPUs 
- Distributed training is sometimes used 

- Not needed for small problems 
- Be aware of bottlenecks: CPU / GPU, CPU / disk 
- Low precison makes things faster and still works 

- 32 bit is standard now, 16 bit soon
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Recap
- Data augmentation: artificially expand your data 
- Transfer learning: CNNs without huge data 
- All about convolutions 
- Implementation details

105



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 106

TensorFlow 
https://www.tensorflow.org 

https://www.tensorflow.org
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TensorFlow

- From Google 

- Very similar to Theano - all about computation graphs 

- Easy visualizations (TensorBoard) 

- Multi-GPU and multi-node training
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TensorFlow: Two-Layer Net

108
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TensorFlow: Two-Layer Net
Create placeholders for 
data and labels: These 
will be fed to the graph
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TensorFlow: Two-Layer Net

Create Variables to hold 
weights; similar to Theano 
shared variables 

Initialize variables with 
numpy arrays 
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TensorFlow: Two-Layer Net

Forward: Compute scores, 
probs, loss (symbolically)
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TensorFlow: Two-Layer Net

Running train_step will 
use SGD to minimize loss

112



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

TensorFlow: Two-Layer Net

Create an artificial dataset; 
y is one-hot like Keras
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TensorFlow: Two-Layer Net

Actually train the model
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TensorFlow: Tensorboard

Tensorboard makes it easy to visualize 
what’s happening inside your models
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TensorFlow: Tensorboard
Tensorboard makes it easy to 
visualize what’s happening 
inside your models 

Same as before, but now we 
create summaries for loss and 
weights

116



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

TensorFlow: Tensorboard

Tensorboard makes it easy to 
visualize what’s happening inside 
your models 

Create a special “merged” 
variable and a SummaryWriter 
object
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TensorFlow: Tensorboard

Tensorboard makes it easy to 
visualize what’s happening inside 
your models 

In the training loop, also run 
merged and pass its value to the 
writer
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TensorFlow: Tensorboard

Start Tensorboard server, and we get graphs!
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TensorFlow: TensorBoard

120
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TensorFlow: TensorBoard

Add names to placeholders 
and variables
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TensorFlow: TensorBoard
Add names to placeholders and 
variables 

Break up the forward pass with 
name scoping
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TensorFlow: TensorBoard

Tensorboard shows the graph!
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TensorFlow: TensorBoard

Tensorboard shows the graph! 

Name scopes expand to show 
individual operations
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TensorFlow: Multi-GPU

Data parallelism:  
synchronous or asynchronous
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TensorFlow: Multi-GPU
Data parallelism:  
synchronous or asynchronous
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Model parallelism:  
Split model across GPUs
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TensorFlow: Distributed
Single machine: 
Like other frameworks
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Many machines: 
Not open source (yet) =(
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TensorFlow: Pretrained Models

- You can get a pretrained models here: 
-https://github.com/tensorflow/models  

- Has inception, resnet, some different autoencoders
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https://github.com/tensorflow/models
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TensorFlow: Pros / Cons

(+) Python + numpy 
(+) Computational graph abstraction, like Theano; great for RNNs 
(+) Much faster compile times than Theano 
(+) Slightly more convenient than raw Theano? 
(+) TensorBoard for visualization 
(+) Data AND model parallelism; best of all frameworks 
(+/-) Distributed models, but not open-source yet 
(-) Slower than other frameworks right now 
(-) Much “fatter” than Torch; more magic 
(-) Not many pretrained models
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Torch 
http://torch.ch/docs/getting-started.html 
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http://torch.ch/docs/getting-started.html
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Torch Overview

- From NYU + IDIAP 
- Written in C and Lua 
- Used a lot a Facebook, DeepMind
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Torch: Pretrained Models

- loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others 
https://github.com/szagoruyko/loadcaffe  

- GoogLeNet v1: https://github.com/soumith/inception.torch  

- GoogLeNet v3: https://github.com/Moodstocks/inception-v3.torch  

- ResNet: https://github.com/facebook/fb.resnet.torch 
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https://github.com/szagoruyko/loadcaffe
https://github.com/soumith/inception.torch
https://github.com/Moodstocks/inception-v3.torch
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Torch: Pros / Cons

(-) Lua 
(-) Less plug-and-play than Caffe 

You usually write your own training code 
(+) Lots of modular pieces that are easy to combine 
(+) Easy to write your own layer types and run on GPU 
(+) Most of the library code is in Lua, easy to read 
(+) Lots of pretrained models! 
(-) Not great for RNNs
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Theano 
http://deeplearning.net/software/theano/ 
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http://deeplearning.net/software/theano/
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Theano Overview

- From Yoshua Bengio’s group at University of Montreal 

- Embracing computation graphs, symbolic computation 

- High-level wrappers: Keras, Lasagne 

- Has Conditional flow (ifelse, switch)
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Theano: Pretrained Models

- Lasagne Model Zoo has pretrained common architectures: 
- https://github.com/Lasagne/Recipes/tree/master/modelzoo  

- AlexNet with weights: https://github.com/uoguelph-mlrg/theano_alexnet  

- sklearn-theano: Run OverFeat and GoogLeNet forward, but no fine-
tuning? http://sklearn-theano.github.io  

- caffe-theano-conversion: CS 231n project from last year: load 
models and weights from caffe! Not sure if full-featured https://github.com/kitofans/
caffe-theano-conversion 
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Best choice

https://github.com/Lasagne/Recipes/tree/master/modelzoo
https://github.com/uoguelph-mlrg/theano_alexnet
http://sklearn-theano.github.io
https://github.com/kitofans/caffe-theano-conversion
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Theano: Pros / Cons

(+) Python + numpy 
(+) Computational graph is nice abstraction 
(+) RNNs fit nicely in computational graph 
(-) Raw Theano is somewhat low-level 
(+) High level wrappers (Keras, Lasagne) ease the pain 
(-) Error messages can be unhelpful 
(-) Large models can have long compile times 
(-) Much “fatter” than Torch; more magic 
(-) Patchy support for pretrained models
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Overview
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Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU: 
Data parallel

Yes Yes 
cunn.DataParallelTable

Yes 
platoon

Yes

Multi-GPU: 
Model parallel

No Yes 
fbcunn.ModelParallel

Experimental Yes (best)

Readable 
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)


