Lecture 10: Training CNNs

Thursday March 2, 2017

1

Announcements!

- Final Project proposals due this **Today**
- I will be out of town next week. Rishit will lead class discussions.
- Next paper: **March 7** You Only Look Once: Unified, Real-Time Object Detection. If this paper seems too deep or confusing, look at Fast R-CNN, Faster R-CNN

Opportunity: Google Brain Residency

What Is The Brain Residency Program?

The Google Brain Residency Program is a one-year intensive residency program focused on Deep Learning. Residents will have the opportunity to conduct cutting-edge research and work alongside some of the most distinguished deep learning scientists within the Google Brain team. To learn more about the team and what we do, visit <u>g.co/brain</u>

- Email contact for questions: brain-residency@google.com
- For more information on the Residency Program, check out our website at g.co/ brainresidency
- More recently, we published a blog post on the Google Research Blog where we discuss updates on current Residents' progress and our program focus for 2017.

Transform

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

- Change the pixels without changing the label
- Train on transformed data
- VERY widely used

1. Horizontal flips

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Data Augmentation 2. Random crops/scales

Training: sample random crops / scales

Data Augmentation 2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

* Original slides borrowed from Andrej Karpathy

Data Augmentation 2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

Data Augmentation 2. Random crops/scales

Training: sample random crops / scales ResNet:

- 1. Pick random L in range [256, 480]
- 2. Resize training image, short side = L
- 3. Sample random 224 x 224 patch

Testing: average a fixed set of crops

ResNet:

- 1. Resize image at 5 scales: {224, 256, 384, 480, 640}
- 2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

Data Augmentation 3. Color jitter

Simple: Randomly jitter contrast

Data Augmentation 3. Color jitter

Simple:

Randomly jitter contrast

Complex:

- 1. Apply PCA to all [R, G, B] pixels in training set
- Sample a "color offset" along principal component directions
- Add offset to all pixels of a training image (As seen in *[Krizhevsky et al.* 2012], ResNet, etc)

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Data Augmentation 3. Color jitter

Random mix/combinations of :

- translation
- rotation
- stretching
- shearing,
- lens distortions, ... (go crazy)

A general theme:

- 1. Training: Add random noise
- 2. Testing: Marginalize over the noise

Batch normalization, Model ensembles

Data Augmentation

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Dropout

Data Augmentation: Takeaway

- Simple to implement, use it
- Especially useful for small datasets
- Fits into framework of noise / marginalization

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Transfer Learning

"You need a lot of a data if you want to train/use CNNs"

Not True

conv-64 conv-64 maxpool conv-128 conv-128 maxpool conv-256 conv-256 maxpool conv-512 conv-512 maxpool conv-512 conv-512 maxpool FC-4096 FC-4096 FC-1000 softmax

image

1. Train on Imagenet

comp150dl

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

CNN Features off-the-shelf: an Astounding Baseline for Recognition [Razavian et al, 2014]

DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition [Donahue*, Jia*, et al., 2013]

	DeCAF ₆	DeCAF ₇
LogReg	40.94 ± 0.3	40.84 ± 0.3
SVM	39.36 ± 0.3	40.66 ± 0.3
Xiao et al. (2010)	38.0	

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Image Captioning: CNN + RNN

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

Transfer learning with CNNs is pervasive... (it's the norm, not an exception)

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Takeaway for your projects/beyond:

Have some dataset of interest but it has < ~1M images?

- 1. Find a very large dataset that has similar data, train a big ConvNet there.
- 2. Transfer learn to your dataset

Caffe ConvNet library has a "Model Zoo" of pretrained models:

https://github.com/BVLC/caffe/wiki/Model-Zoo

All About Convolutions Part I: How to stack them

Suppose we stack two 3x3 conv layers (stride 1) Each neuron sees 3x3 region of previous activation map

Question: How big of a region in the input does a neuron on the second conv layer see?

Question: How big of a region in the input does a neuron on the second conv layer see?

Answer: 5 x 5

Question: If we stack three 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Question: If we stack three 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Answer: 7 x 7

Question: If we stack three 3x3 conv layers, how big of an input region does a neuron in the third layer see?

Answer: 7 x 7

Three 3 x 3 conv gives similar representational power as a single 7 x 7 convolution

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights:

three CONV with 3 x 3 filters

Number of weights:

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights: = $C \times (7 \times 7 \times C) = 49 C^2$ three CONV with 3 x 3 filters

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights: = $C \times (7 \times 7 \times C) = 49 C^2$ three CONV with 3 x 3 filters

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Fewer parameters, more nonlinearity = GOOD

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights: = $C \times (7 \times 7 \times C) = 49 C^2$

Number of multiply-adds:

three CONV with 3 x 3 filters

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Number of multiply-adds:

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights: = $C \times (7 \times 7 \times C) = 49 C^2$

Number of multiply-adds: = $(H \times W \times C) \times (7 \times 7 \times C)$ = **49 HWC**² three CONV with 3 x 3 filters

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Number of multiply-adds: = $3 \times (H \times W \times C) \times (3 \times 3 \times C)$ = **27 HWC**²

Suppose input is H x W x C and we use convolutions with C filters to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters

Number of weights: = $C \times (7 \times 7 \times C) = 49 C^2$

Number of multiply-adds: = **49 HWC²** three CONV with 3 x 3 filters

Number of weights: = $3 \times C \times (3 \times 3 \times C) = 27 C^2$

Number of multiply-adds: = 27 HWC²

Less compute, more nonlinearity = GOOD

Why stop at 3 x 3 filters? Why not try 1 x 1?

Why stop at 3 x 3 filters? Why not try 1 x 1? (note: 1x1 filters sum across all channels of the input)

H x W x C Conv 1x1, C/2 filters \oint H x W x (C / 2) 1. "bottleneck" 1 x 1 conv to reduce dimension

Why stop at 3 x 3 filters? Why not try 1 x 1? (note: 1x1 filters sum across all channels of the input)

H x W x C Conv 1x1, C/2 filters \checkmark H x W x (C / 2) Conv 3x3, C/2 filters \checkmark H x W x (C / 2)

- 1. "bottleneck" 1 x 1 conv to reduce dimension
- 2. 3 x 3 conv at reduced dimension

Why stop at 3 x 3 filters? Why not try 1 x 1? (note: 1x1 filters sum across all channels of the input)

 $H \times W \times C$ Conv 1x1, C/2 filters $H \times W \times (C / 2)$ Conv 3x3, C/2 filters $H \times W \times (C / 2)$ Conv 1x1, C filters $H \times W \times C$

- 1. "bottleneck" 1 x 1 conv to reduce dimension
- 2. 3 x 3 conv at reduced dimension
- 3. Restore dimension with another 1 x 1 conv

[Seen in Lin et al, "Network in Network", GoogLeNet, ResNet]

Why stop at 3 x 3 filters? Why not try 1 x 1?

Still using 3 x 3 filters ... can we break it up?

Still using 3 x 3 filters ... can we break it up?

```
\begin{array}{c} \mathsf{H} \times \mathsf{W} \times \mathsf{C} \\ \mathsf{Conv} \ \mathsf{1x3, C} \ \mathsf{filters} \quad \checkmark \\ \mathsf{H} \times \mathsf{W} \times \mathsf{C} \\ \mathsf{Conv} \ \mathsf{3x1, C} \ \mathsf{filters} \quad \checkmark \\ \mathsf{H} \times \mathsf{W} \times \mathsf{C} \end{array}
```


Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, "Rethinking the Inception Architecture for Computer Vision"

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

How to stack convolutions: Recap

- Replace large convolutions (5 x 5, 7 x 7) with stacks of 3 x 3 convolutions
- 1 x 1 "bottleneck" convolutions are very efficient
- Can factor N x N convolutions into 1 x N and N x 1
- All of the above give fewer parameters, less compute, more nonlinearity

All About Convolutions Part II: How to compute them

There are highly optimized matrix multiplication routines for just about every platform

Can we turn convolution into matrix multiplication?

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Feature map: $H \times W \times C$

Conv weights: D filters, each K x K x C

Reshape K x K x C receptive field to column with K²C elements

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Repeat for all columns to get (K²C) x N matrix (N receptive field locations)

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Feature map: $H \times W \times C$

Conv weights: D filters, each K x K x C

Elements appearing in multiple receptive fields are duplicated; this uses a lot of memory

Repeat for all columns to get (K²C) x N matrix (N receptive field locations)

Feature map: H x W x C

Conv weights: D filters, each K x K x C

Feature map: $H \times W \times C$

Conv weights: D filters, each K x K x C


```
def corw_forward_strides(x, w, b, conv_param):
    N, C, H, W = x.shape
    F, _, HH, WW = w.shape
    stride, pad = conv_param['stride'], corw_param['pad']
    # Check dimensions
    assert (W + 2 * pad - NH) % stride == 0, 'width does not work'
    assert (H + 2 * pad - HH) % stride == 0, 'height does not work'
```

Pad the input
p = pad
x_padded = np.pad(x, ((0, 0), (0, 0), (p, p), (p, p)), mode='constant')

```
# Figure out output dimensions
H += 2 * pad
W += 2 * pad
out_h = (H - HH) / stride + 1
out_m = (W - NH) / stride + 1
```

```
# Perform an im2col operation by picking clever strides
shape = {C, HH, WM, N, out_h, out_M}
strides = {N * W, W, S, C * H * M, stride * W, stride)
strides = x.itemsize * np.array(strides)
x_stride = np.lib.stride_tricks.as_strides)
x_stride = np.lib.stride_tricks.as_stride(x_padded,
shape*shape, strides*stride(x_padded,
x_cols = np.ascontiguousarray(x_stride)
x_cols.shape = {C * HH * VM, N * out_h * out_M}
```

Now all our convolutions are a big matrix multiply
res = w.reshape(f, -1).dot(x_cols) + b.reshape(-1, 1)

Reshape the cutput
res.shape = (F, N, cut_h, cut_w)
out = res.transpose(1, 0, 2, 3)

Be nice and return a contiguous array # The old version of conv_forward_fast doesn't do this, so for a fair # comparison we won't either out = np_ascontiguousarray[out]

cache = {x, w, b, conv_param, x_cols}
return out, cache

Case study: fast_layers.py from HW

im2col

matrix multiply: call np.dot (which calls BLAS)

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Implementing convolutions: FFT

- Convolution Theorem: The convolution of f and g is equal to the elementwise product of their Fourier Transforms: $\mathcal{F}(f * g) = \mathcal{F}(f) \cdot \mathcal{F}(g)$

- Using the **Fast Fourier Transform**, we can compute the Discrete Fourier transform of an N-dimensional vector in O(N log N) time (also extends to 2D images)

Implementing convolutions: FFT

- 1. Compute FFT of weights: F(W)
- 2. Compute FFT of image: F(X)
- 3. Compute elementwise product: $F(W) \circ F(X)$
- 4. Compute inverse FFT: $Y = F^{-1}(F(W) \circ F(X))$

Implementing convolutions: FFT

FFT convolutions get a big speedup for larger filters Not much speedup for 3x3 filters =(

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Implementing convolution: "Fast Algorithms"

Naive matrix multiplication: Computing product of two N x N matrices takes O(N³) operations

Strassen's Algorithm: Use clever arithmetic to reduce complexity to $O(N^{\log 2(7)}) \sim O(N^{2.81})$

$$\begin{split} \mathbf{A} &= \begin{bmatrix} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \mathbf{A}_{2,1} & \mathbf{A}_{2,2} \end{bmatrix} & \mathbf{M}_1 := (\mathbf{A}_{1,1} + \mathbf{A}_{2,2})(\mathbf{B}_{1,1} + \mathbf{B}_{2,2}) \\ \mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} \\ \mathbf{M}_2 := (\mathbf{A}_{2,1} + \mathbf{A}_{2,2})\mathbf{B}_{1,1} \\ \mathbf{M}_3 := \mathbf{A}_{1,1}(\mathbf{B}_{1,2} - \mathbf{B}_{2,2}) \\ \mathbf{M}_4 := \mathbf{A}_{2,2}(\mathbf{B}_{2,1} - \mathbf{B}_{1,1}) \\ \mathbf{M}_5 := (\mathbf{A}_{1,1} + \mathbf{A}_{1,2})\mathbf{B}_{2,2} \\ \mathbf{C} &= \begin{bmatrix} \mathbf{C}_{1,1} & \mathbf{C}_{1,2} \\ \mathbf{C}_{2,1} & \mathbf{C}_{2,2} \end{bmatrix} & \mathbf{M}_6 := (\mathbf{A}_{2,1} - \mathbf{A}_{1,1})(\mathbf{B}_{1,1} + \mathbf{B}_{1,2}) \\ \mathbf{M}_7 := (\mathbf{A}_{1,2} - \mathbf{A}_{2,2})(\mathbf{B}_{2,1} + \mathbf{B}_{2,2}) \\ \end{split}$$

From Wikipedia

Implementing convolution: "Fast Algorithms"

Similar cleverness can be applied to convolutions

Lavin and Gray (2015) work out special cases for 3x3 convolutions:

$$F(2,3) = \begin{bmatrix} d_0 & d_1 & d_2 \\ d_1 & d_2 & d_3 \end{bmatrix} \begin{bmatrix} g_0 \\ g_1 \\ g_2 \end{bmatrix} = \begin{bmatrix} m_1 + m_2 + m_3 \\ m_2 - m_3 - m_4 \end{bmatrix}$$

$$m_1 = (d_0 - d_2)g_0 \qquad m_2 = (d_1 + d_2)\frac{g_0 + g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

$$m_4 = (d_1 - d_3)g_2 \qquad m_3 = (d_2 - d_1)\frac{g_0 - g_1 + g_2}{2}$$

$$g = \begin{bmatrix} g_0 & g_1 & g_2 \end{bmatrix}^T$$

$$d = \begin{bmatrix} d_0 & d_1 & d_2 & d_3 \end{bmatrix}^T$$

Lavin and Gray, "Fast Algorithms for Convolutional Neural Networks", 2015

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Implementing convolution: "Fast Algorithms"

Huge speedups on VGG for small batches:

Ν	cuDNN		F(2x2,3x3)		Speedup
	msec	TFLOPS	msec	TFLOPS	Speedup
1	12.52	3.12	5.55	7.03	2.26X
2	20.36	3.83	9.89	7.89	2.06X
4	104.70	1.49	17.72	8.81	5.91X
8	241.21	1.29	33.11	9.43	7.28X
16	203.09	3.07	65.79	9.49	3.09X
32	237.05	5.27	132.36	9.43	1.79X
64	394.05	6.34	266.48	9.37	1.48X

Table 5. cuDNN versus $F(2 \times 2, 3 \times 3)$ performance on VGG Network E with fp32 data. Throughput is measured in Effective TFLOPS, the ratio of direct algorithm GFLOPs to run time.

N	cuDNN		F(2x2,3x3)		Speedup
	msec	TFLOPS	msec	TFLOPS	Speedup
1	14.58	2.68	5.53	7.06	2.64X
2	20.94	3.73	9.83	7.94	2.13X
4	104.19	1.50	17.50	8.92	5.95X
8	241.87	1.29	32.61	9.57	7.42X
16	204.01	3.06	62.93	9.92	3.24X
32	236.13	5.29	123.12	10.14	1.92X
64	395.93	6.31	242.98	10.28	1.63X

Table 6. cuDNN versus $F(2 \times 2, 3 \times 3)$ performance on VGG Network E with fp16 data.

Computing Convolutions: Recap

- im2col: Easy to implement, but big memory overhead
- FFT: Big speedups for small kernels
- "Fast Algorithms" seem promising, not widely used yet

Implementation Details

Spot the CPU!

Spot the GPU!

"graphics processing unit"

Spot the GPU!

"graphics processing unit"

vs AMD

NVIDIA is much more common for deep learning

GTC 2015:

Introduced new Titan X GPU by bragging about AlexNet benchmarks

CPU Few, fast cores (1 - 16) Good at sequential processing

GPU

Many, slower cores (thousands) Originally for graphics Good at parallel computation

GPUs can be programmed

- CUDA (NVIDIA only)
 - Write C code that runs directly on the GPU
 - Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc
- OpenCL
 - Similar to CUDA, but runs on anything
 - Usually slower :(
- Udacity: Intro to Parallel Programming <u>https://www.udacity.com/</u> <u>course/cs344</u>
 - For deep learning just use existing libraries

GPUs are really good at matrix multiplication:

GPUs are really good at convolution (cuDNN):

All comparisons are against a 12-core Intel E5-2679v2 CPU @ 2.4GHz running Caffe with Intel MKL 11.1.3.

Even with GPUs, training can be slow VGG: ~2-3 weeks training with 4 GPUs ResNet 101: 2-3 weeks with 4 GPUs

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html

Multi-GPU training: More complex

Alex Krizhevsky, "One weird trick for parallelizing convolutional neural networks"

Google: Distributed CPU training

comp150dl

Data parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]

Google: Distributed CPU training

Model parallelism

[Large Scale Distributed Deep Networks, Jeff Dean et al., 2013]

Google: Synchronous vs Async

Abadi et al, "TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems"

Bottlenecks

to be aware of

GPU - CPU communication is a bottleneck.

CPU data prefetch+augment thread running

while

GPU performs forward/backward pass

CPU - disk bottleneck

Hard disk is slow to read from

=> Pre-processed images stored contiguously in files, read as raw byte stream from SSD disk

GPU memory bottleneck

Titan X: 12 GB <- currently the max GTX 980 Ti: 6 GB

e.g. AlexNet: ~3GB needed with batch size 256

- 64 bit "double" precision is default in a lot of programming
- 32 bit "single" precision is typically used for CNNs for performance

- 64 bit "double" precision is default in a lot of programming
- 32 bit "single" precision is typically used for CNNs for performance
 - Including in your homework!

class FullyConnectedNet(object):

A fully-connected neural network with an arbitrary number of hidden layers, ReLU nonlinearities, and a softmax loss function. This will also implement dropout and batch normalization as options. For a network with L layers, the architecture will be

{affine - [batch norm] - relu - [dropout]} x (L - 1) - affine - softmax

where batch normalization and dropout are optional, and the $\{\ldots\}$ block is repeated L - 1 times.

Similar to the TwoLayerNet above, learnable parameters are stored in the self.params dictionary and will be learned using the Solver class.

AlexNet (One Weird Trick paper) - Input 128x3x224x224

- Prediction: 16 bit "half" precision will be the new standard
 - Already supported in cuDNN
 - Nervana fp16 kernels are the fastest right now
 - Hardware support in next-gen NVIDIA cards (Pascal)
 - Not yet supported in Torch

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	92	29	62
CuDNN[R3]-fp16 (Torch)	cudnn.SpatialConvolution	96	30	66
CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	96	32	64

OxfordNet [Model-A] - Input 64x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	529	167	362
Nervana-fp32	ConvLayer	590	180	410
CuDNN[R3]-fp16 (Torch)	cudnn.SpatialConvolution	615	179	436

GoogleNet V1 - Input 128x3x224x224

Library	Class	Time (ms)	forward (ms)	backward (ms)
Nervana-fp16	ConvLayer	283	85	197
Nervana-fp32	ConvLayer	322	90	232
CuDNN[R3]-fp32 (Torch)	cudnn.SpatialConvolution	431	117	313

- How low can we go?
- Gupta et al, 2015: Train with **16-bit fixed point** with stochastic rounding

- How low can we go?
- Courbariaux et al, 2015:
 Train with 10-bit activations, 12-bit parameter updates

Courbariaux et al, "Training Deep Neural Networks with Low Precision Multiplications", ICLR 2015

- How low can we go?
- Courbariaux and Bengio, February 9 2016:
 - Train with 1-bit activations and weights!
 - All activations and weights are +1 or -1
 - Fast multiplication with bitwise XNOR
 - (Gradients use higher precision)

Courbariaux et al, "BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1", arXiv 2016

Implementation details: Recap

- GPUs much faster than CPUs
- Distributed training is sometimes used
 - Not needed for small problems
- Be aware of bottlenecks: CPU / GPU, CPU / disk
- Low precison makes things faster and still works
 - 32 bit is standard now, 16 bit soon

Recap

- Data augmentation: artificially expand your data
- Transfer learning: CNNs without huge data
- All about convolutions
- Implementation details

https://www.tensorflow.org

TensorFlow

- From Google
- Very similar to Theano all about computation graphs
- Easy visualizations (TensorBoard)
- Multi-GPU and multi-node training

TensorFlow: Two-Layer Net

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```


Create placeholders for data and labels: These will be fed to the graph

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```


Create Variables to hold weights; similar to Theano shared variables

Initialize variables with numpy arrays

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce_sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```


Forward: Compute scores, probs, loss (symbolically)

Running train_step will - use SGD to minimize loss

Create an artificial dataset; y is one-hot like Keras

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
     , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```


Actually train the model -

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce sum(y * tf.log(probs))
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    , loss value = sess.run([train step, loss],
                             feed dict={x: xx, y: yy})
    print loss value
```

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Tensorboard makes it easy to visualize what's happening inside your models

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce_sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
  merged = tf.merge all summaries()
 writer = tf.train.SunmaryWriter('/tmp/fc logs', sess.graph def)
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    summary str. , loss value = sess.run(
                                  [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```


Tensorboard makes it easy to visualize what's happening inside your models

Same as before, but now we _ create summaries for loss and weights

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
a relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce_sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = le-2
train step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess:
 merged = tf.merge all summaries()
 writer = tf.train.SummaryWriter('/tmp/fc logs', sess.graph def)
  sess.run(tf.initialize all variables())
  for t in xrange(100):
    summary_str, _, loss_value = sess.run(
                                  [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```


Tensorboard makes it easy to visualize what's happening inside your models

Create a special "merged" variable and a SummaryWriter object

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
 relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce_sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
with tf.Seccion() as seco
  merged = tf.merge all summaries()
          tf.train.SummaryWriter('/tmp/fc loos', sess.graph def
   Casteniti.initiatize dit variables()
  for t in xrange(100):
    summary str. , loss value = sess.run(
                                   [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
    writer.add summary(summary str. t)
    print loss value
```


Tensorboard makes it easy to visualize what's happening inside your models

In the training loop, also run merged and pass its value to the writer

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
 = tf.placeholder(tf.float32, shape=[None, D])
y = tf.placeholder(tf.float32, shape=[None, C])
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32))
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32))
a = tf.matmul(x, w1)
 relu = tf.nn.relu(a)
scores = tf.matmul(a relu, w2)
probs = tf.nn.softmax(scores)
loss = -tf.reduce_sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train_step = tf.train.GradientDescentOptimizer(learning_rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yv[np.aranoe(N), np.random.randint(C, size=N)] = 1
with tf.Session() as sess
  merged = tf.merge all summaries()
 writer = tf.train.SummaryWriter('/tmp/fc_logs', sess.graph def)
  sess.run(tf.initialize all variables())
  for t in xrange(100)
   summary str. , loss value = sess.run(
                                   [merged, train step, loss],
                                  feed dict={x: xx, y: yy})
   writer.add summary(summary str. t)
```


Start Tensorboard server, and we get graphs!

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n


```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D], name='x')
y = tf.placeholder(tf.float32, shape=[None, C], name='y')
w1 = tf.Variable(le-3 * np.random.randn(D, H).astype(np.float32), name='w1')
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32), name='w2')
with tf.name_scope('scores') as scope:
 a = tf.matmul(x, w1)
  a relu = tf.nn.relu(a)
  scores = tf.matmul(a relu, w2)
with tf.name_scope('loss') as scope:
  probs = tf.nn.softmax(scores)
  loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram summary('w2', w2)
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
```


Add names to placeholders and variables

Add names to placeholders and variables

Break up the forward pass with name scoping

```
import tensorflow as tf
import numpy as np
N, D, H, C = 64, 1000, 100, 10
x = tf.placeholder(tf.float32, shape=[None, D], name='x')
y = tf.placeholder(tf.float32, shape=[None, C], name='y')
wl = tf.Variable(le-3 * np.random.randn(0, H).astype(np.float32), name='wl')
w2 = tf.Variable(le-3 * np.random.randn(H, C).astype(np.float32), name='w2')
with tf.name_scope('scores') as scope:
    = LT.MOLMULLA, W17
  a relu = tf.nn.relu(a)
with tf.name scope(
                          as scope:
  prous = cr.mm.sorcmax(scores)
 loss = -tf.reduce sum(y * tf.log(probs))
loss summary = tf.scalar summary('loss', loss)
w1 hist = tf.histogram summary('w1', w1)
w2 hist = tf.histogram_summary('w2', w2)
learning rate = 1e-2
train step = tf.train.GradientDescentOptimizer(learning rate).minimize(loss)
xx = np.random.randn(N, D).astype(np.float32)
yy = np.zeros((N, C)).astype(np.float32)
yy[np.arange(N), np.random.randint(C, size=N)] = 1
```


Tensorboard shows the graph!

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Tensorboard shows the graph!

Name scopes expand to show individual operations

TensorFlow: Multi-GPU

Data parallelism: synchronous or asynchronous

TensorFlow: Multi-GPU

Data parallelism: synchronous or asynchronous

Model parallelism: Split model across GPUs

TensorFlow: Distributed

Single machine:

Like other frameworks

Many machines:

Not open source (yet) =(

TensorFlow: Pretrained Models

- You can get a pretrained models here: - <u>https://github.com/tensorflow/models</u>
- Has inception, resnet, some different autoencoders

TensorFlow: Pros / Cons

(+) Python + numpy

- (+) Computational graph abstraction, like Theano; great for RNNs
- (+) Much faster compile times than Theano
- (+) Slightly more convenient than raw Theano?
- (+) TensorBoard for visualization
- (+) Data AND model parallelism; best of all frameworks
- (+/-) Distributed models, but not open-source yet
- (-) Slower than other frameworks right now
- (-) Much "fatter" than Torch; more magic
- (-) Not many pretrained models

Torch Overview

- From NYU + IDIAP
- Written in C and Lua
- Used a lot a Facebook, DeepMind

Torch: Pretrained Models

- loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others https://github.com/szagoruyko/loadcaffe
- GoogLeNet v1: <u>https://github.com/soumith/inception.torch</u>
- GoogLeNet v3: <u>https://github.com/Moodstocks/inception-v3.torch</u>
- ResNet: <u>https://github.com/facebook/fb.resnet.torch</u>

Torch: Pros / Cons

(-) Lua

(-) Less plug-and-play than Caffe

You usually write your own training code

(+) Lots of modular pieces that are easy to combine

(+) Easy to write your own layer types and run on GPU

(+) Most of the library code is in Lua, easy to read

- (+) Lots of pretrained models!
- (-) Not great for RNNs

Theano Overview

- From Yoshua Bengio's group at University of Montreal
- Embracing computation graphs, symbolic computation
- High-level wrappers: Keras, Lasagne
- Has Conditional flow (ifelse, switch)

Theano: Pretrained Models

Best choice

- Lasagne Model Zoo has pretrained common architectures:

- https://github.com/Lasagne/Recipes/tree/master/modelzoo

- AlexNet with weights: https://github.com/uoguelph-mlrg/theano_alexnet
- sklearn-theano: Run OverFeat and GoogLeNet forward, but no finetuning? http://sklearn-theano.github.io
- caffe-theano-conversion: CS 231n project from last year: load models and weights from caffe! Not sure if full-featured https://github.com/kitofans/caffe-theano-conversion

Theano: Pros / Cons

- (+) Python + numpy
- (+) Computational graph is nice abstraction
- (+) RNNs fit nicely in computational graph
- (-) Raw Theano is somewhat low-level
- (+) High level wrappers (Keras, Lasagne) ease the pain
- (-) Error messages can be unhelpful
- (-) Large models can have long compile times
- (-) Much "fatter" than Torch; more magic
- (-) Patchy support for pretrained models

Overview

	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pretrained	Yes ++	Yes ++	Yes (Lasagne)	Inception
Multi-GPU: Data parallel	Yes	Yes cunn.DataParallelTable	Yes platoon	Yes
Multi-GPU: Model parallel	No	Yes fbcunn.ModelParallel	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

