
comp150dl 1

Lecture 10:
Training CNNs

Thursday March 2, 2017

comp150dl

Announcements!

- Final Project proposals due this Today

- I will be out of town next week. Rishit will lead class discussions.

- Next paper: March 7 You Only Look Once: Unified, Real-Time Object
Detection. If this paper seems too deep or confusing, look at Fast R-CNN,
Faster R-CNN

2

comp150dl

Opportunity: Google Brain Residency

What Is The Brain Residency Program?
The Google Brain Residency Program is a one-year intensive residency program
focused on Deep Learning. Residents will have the opportunity to conduct cutting-
edge research and work alongside some of the most distinguished deep learning
scientists within the Google Brain team. To learn more about the team and what we
do, visit g.co/brain

- Email contact for questions: brain-residency@google.com
- For more information on the Residency Program, check out our website at g.co/

brainresidency
- More recently, we published a blog post on the Google Research Blog where we

discuss updates on current Residents’ progress and our program focus for 2017.

3

http://g.co/brain
mailto:brain-residency@google.com

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 4

Data Augmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Data Augmentation

5

Load
image
and
label

“cat
”

CNN

Compute
loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Data Augmentation

6

Load
image
and
label

“cat
”

CNN

Compute
loss

Transform
image

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 7

Data Augmentation

- Change the pixels without
changing the label  

- Train on transformed data

- VERY widely used

What the
computer
sees

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 8

Data Augmentation
1. Horizontal flips

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Training: sample random crops / scales 

9

Data Augmentation
2. Random crops/scales

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Training: sample random crops / scales 
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch

10

Data Augmentation
2. Random crops/scales

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Training: sample random crops / scales 
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch  

Testing: average a fixed set of crops

11

Data Augmentation
2. Random crops/scales

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Training: sample random crops / scales 
ResNet:
1. Pick random L in range [256, 480]
2. Resize training image, short side = L
3. Sample random 224 x 224 patch  

Testing: average a fixed set of crops
ResNet:
1. Resize image at 5 scales: {224, 256, 384, 480, 640}
2. For each size, use 10 224 x 224 crops: 4 corners + center, + flips

12

Data Augmentation
2. Random crops/scales

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 13

Data Augmentation
3. Color jitter
Simple:
Randomly jitter contrast

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 14

Simple:
Randomly jitter contrast

Complex: 

1. Apply PCA to all [R, G, B]
pixels in training set  

2. Sample a “color offset”
along principal component
directions

1. Add offset to all pixels of a
training image

(As seen in [Krizhevsky et al.
2012], ResNet, etc)

Data Augmentation
3. Color jitter

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 15

Random mix/combinations of :
- translation
- rotation
- stretching
- shearing,
- lens distortions, … (go crazy)

Data Augmentation
3. Color jitter

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 16

A general theme:
1. Training: Add random noise
2. Testing: Marginalize over the noise

Dropout
Data Augmentation

Batch normalization,
Model ensembles

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Data Augmentation: Takeaway

- Simple to implement, use it
- Especially useful for small datasets
- Fits into framework of noise / marginalization

17

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 18

Transfer Learning

“You need a lot of a data if you want
to train/use CNNs”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 19

Transfer Learning

“You need a lot of a data if you want
to train/use CNNs”

Not True

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 20

Transfer Learning with CNNs

1. Train on
Imagenet

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 21

Transfer Learning with CNNs

1. Train on
Imagenet

2. Small
dataset:
feature
extractor

Freeze
these

Train
this

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 22

Transfer Learning with CNNs

1. Train on
Imagenet

3. Medium
dataset:
finetuning

more data = retrain
more of the network (or
all of it)

2. Small
dataset:
feature
extractor

Freeze
these

Train
this

Freeze
these

Train
this

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 23

Transfer Learning with CNNs

1. Train on
Imagenet

2. Small
dataset:
feature
extractor

Freeze
these

Train
this

Freeze
these

Train
this

tip: use only ~1/10th of the original
learning rate in finetuning top layer, and
~1/100th on intermediate layers

3. Medium
dataset:
finetuning

more data = retrain
more of the network (or
all of it)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 24

CNN Features off-the-shelf: an Astounding Baseline for Recognition
[Razavian et al, 2014]

DeCAF: A Deep
Convolutional Activation
Feature for Generic Visual
Recognition
[Donahue*, Jia*, et al.,
2013]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 25

more
generic

more
specific

very similar
dataset

very different
dataset

very little data ? ?

quite a lot of
data

? ?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 26

more
generic

more
specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on top
layer

?

quite a lot of
data

Finetune a few
layers

?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 27

more
generic

more
specific

very similar
dataset

very different
dataset

very little data Use Linear
Classifier on top
layer

You’re in
trouble… Try
linear classifier
from different
stages

quite a lot of
data

Finetune a few
layers

Finetune a
larger number of
layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 28

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object
Detection  
(Faster R-
CNN)

Image Captioning:
CNN + RNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 29

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object
Detection  
(Faster R-
CNN)

CNN pretrained
on ImageNet

Image Captioning:
CNN + RNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 30

Transfer learning with CNNs is pervasive…
(it’s the norm, not an exception)

Object
Detection  
(Faster R-
CNN)

CNN pretrained
on ImageNet

Word vectors
pretrained from
word2vec

Image Captioning:
CNN + RNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 31

Takeaway for your projects/beyond:
Have some dataset of interest but it has < ~1M images?

1. Find a very large dataset that has similar data, train a
big ConvNet there.

2. Transfer learn to your dataset

Caffe ConvNet library has a “Model Zoo” of pretrained
models:
https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/BVLC/caffe/wiki/Model-Zoo

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 32

All About Convolutions  
Part I: How to stack them

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 33

The power of small filters

Suppose we stack two 3x3 conv layers (stride 1)
Each neuron sees 3x3 region of previous activation map

Input First Conv Second Conv

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 34

Question: How big of a region in the input does a neuron on
the second conv layer see?

Input First Conv Second Conv

The power of small filters

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 35

The power of small filters

Question: How big of a region in the input does a neuron on
the second conv layer see?
Answer: 5 x 5

Input First Conv Second Conv

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 36

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 37

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

X

X

Answer: 7 x 7

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 38

The power of small filters

Question: If we stack three 3x3 conv layers, how big of an
input region does a neuron in the third layer see?

X

X

Answer: 7 x 7

Three 3 x 3 conv
gives similar
representational
power as a single  
7 x 7 convolution

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 39

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 40

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:

three CONV with 3 x 3 filters
Number of weights:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 41

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters
Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 42

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:
= C x (7 x 7 x C) = 49 C2

three CONV with 3 x 3 filters
Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Fewer parameters, more nonlinearity = GOOD

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 43

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:

three CONV with 3 x 3 filters
Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 44

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= (H x W x C) x (7 x 7 x C)
= 49 HWC2

three CONV with 3 x 3 filters
Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 3 x (H x W x C) x (3 x 3 x C)
= 27 HWC2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 45

The power of small filters

Suppose input is H x W x C and we use convolutions with C filters
to preserve depth (stride 1, padding to preserve H, W)

one CONV with 7 x 7 filters
Number of weights:
= C x (7 x 7 x C) = 49 C2

Number of multiply-adds:
= 49 HWC2

three CONV with 3 x 3 filters
Number of weights:
= 3 x C x (3 x 3 x C) = 27 C2

Number of multiply-adds:
= 27 HWC2

Less compute, more nonlinearity = GOOD

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 46

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 47

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?
(note: 1x1 filters sum across all channels of the input)

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

1. “bottleneck” 1 x 1 conv  
to reduce dimension 

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 48

The power of small filters

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)
Conv 3x3, C/2 filters

1. “bottleneck” 1 x 1 conv  
to reduce dimension 

2. 3 x 3 conv at reduced
dimension 

Why stop at 3 x 3 filters? Why not try 1 x 1?
(note: 1x1 filters sum across all channels of the input)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 49

The power of small filters

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

1. “bottleneck” 1 x 1 conv  
to reduce dimension 

2. 3 x 3 conv at reduced
dimension 

3. Restore dimension  
with another 1 x 1 conv  

[Seen in Lin et al, “Network in Network”,
GoogLeNet, ResNet]

Why stop at 3 x 3 filters? Why not try 1 x 1?
(note: 1x1 filters sum across all channels of the input)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 50

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C
Single  
3 x 3 conv

Bottleneck  
sandwich

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 51

The power of small filters

Why stop at 3 x 3 filters? Why not try 1 x 1?

H x W x C
Conv 1x1, C/2 filters

H x W x (C / 2)

H x W x (C / 2)

H x W x C

Conv 3x3, C/2 filters

Conv 1x1, C filters

H x W x C

Conv 3x3, C filters

H x W x C

3.25 C2  

parameters

9 C2  

parameters

More nonlinearity, 
fewer params,  
less compute!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 52

The power of small filters

Still using 3 x 3 filters … can we break it up?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 53

The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 54

The power of small filters

H x W x C
Conv 1x3, C filters

H x W x C

H x W x C
Conv 3x1, C filters

Still using 3 x 3 filters … can we break it up?

6 C2  

parameters

Conv 3x3, C filters

H x W x C
9 C2  

parameters

H x W x C

More nonlinearity, 
fewer params,  
less compute!

comp150dl 55* figure courtesy Aaditya Parkash

aka GoogLeNet

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 56

The power of small filters

Latest version of GoogLeNet incorporates all these ideas

Szegedy et al, “Rethinking the Inception Architecture for Computer Vision”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

How to stack convolutions: Recap
- Replace large convolutions (5 x 5, 7 x 7) with stacks of 3

x 3 convolutions
- 1 x 1 “bottleneck” convolutions are very efficient
- Can factor N x N convolutions into 1 x N and N x 1
- All of the above give fewer parameters, less compute,

more nonlinearity

57

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 58

All About Convolutions  
Part II: How to compute them

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

59

There are highly optimized matrix multiplication routines
for just about every platform

Can we turn convolution into matrix multiplication?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

60

Feature map: H x W x C Conv weights: D filters, each K x K x C

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

61

Feature map: H x W x C Conv weights: D filters, each K x K x C

Reshape K x K x C
receptive field to
column with K2C
elements

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

62

Feature map: H x W x C Conv weights: D filters, each K x K x C

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

63

Feature map: H x W x C Conv weights: D filters, each K x K x C

Elements appearing in
multiple receptive fields are
duplicated; this uses a lot of
memory

Repeat for all columns to get (K2C) x N matrix
(N receptive field locations)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

64

Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix
Reshape each filter to K2C row,
making D x (K2C) matrix

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing Convolutions: im2col

65

Feature map: H x W x C Conv weights: D filters, each K x K x C

(K2C) x N matrix D x (K2C)
matrix

D x N result;
reshape to output tensor

Matrix
multiply

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 66

Case study:
CONV forward in Caffe
library

im2col

matrix multiply: call to
cuBLAS

bias offset

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 67

Case study:
fast_layers.py from HW

im2col

matrix multiply:
call np.dot 
(which calls BLAS)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolutions: FFT
- Convolution Theorem: The convolution of f and g is

equal to the elementwise product of their Fourier
Transforms:

- Using the Fast Fourier Transform, we can compute the
Discrete Fourier transform of an N-dimensional vector in
O(N log N) time (also extends to 2D images)

68

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolutions: FFT
1. Compute FFT of weights: F(W)  

2. Compute FFT of image: F(X)  

3. Compute elementwise product: F(W) ○ F(X) 

4. Compute inverse FFT: Y = F-1(F(W) ○ F(X))

69

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolutions: FFT

70

FFT convolutions get a big speedup for larger filters
Not much speedup for 3x3 filters =(

Vasilache et al, Fast Convolutional Nets With fbfft: A GPU Performance Evaluation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolution: “Fast Algorithms”

71

Naive matrix multiplication: Computing product of two  
N x N matrices takes O(N3) operations
Strassen’s Algorithm: Use clever arithmetic to reduce
complexity to O(Nlog2(7)) ~ O(N2.81)

From Wikipedia

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolution: “Fast Algorithms”

72

Similar cleverness can be applied to convolutions

Lavin and Gray (2015) work out special cases for 3x3
convolutions:

Lavin and Gray, “Fast Algorithms for Convolutional Neural Networks”, 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementing convolution: “Fast Algorithms”

73

Huge speedups on VGG for small batches:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Computing Convolutions: Recap

- im2col: Easy to implement, but big memory overhead  

- FFT: Big speedups for small kernels  

- “Fast Algorithms” seem promising, not widely used yet

74

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 75

Implementation Details

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 76

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 77

Spot the CPU!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 78

Spot the CPU!
“central processing unit”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 79

Spot the GPU!
“graphics processing
unit”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 80

Spot the GPU!
“graphics processing
unit”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 81

VS

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 82

VS

NVIDIA is much more
common for deep learning

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 83

GTC 2015:
Introduced new Titan X
GPU by bragging about
AlexNet benchmarks

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 84

CPU
Few, fast cores (1 - 16)
Good at sequential processing

GPU
Many, slower cores (thousands)
Originally for graphics
Good at parallel computation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

GPUs can be programmed
- CUDA (NVIDIA only)

- Write C code that runs directly on the GPU
- Higher-level APIs: cuBLAS, cuFFT, cuDNN, etc

- OpenCL
- Similar to CUDA, but runs on anything
- Usually slower :(

- Udacity: Intro to Parallel Programming https://www.udacity.com/
course/cs344
- For deep learning just use existing libraries

85

https://www.udacity.com/course/cs344

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 86

GPUs are really good  
at matrix multiplication:

GPU: NVIDA Tesla K40  
with cuBLAS

CPU: Intel E5-2697 v2 
12 core @ 2.7 Ghz 
with MKL

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 87

GPUs are really good at convolution (cuDNN):

All comparisons are against a 12-core Intel E5-2679v2 CPU @
2.4GHz running Caffe with Intel MKL 11.1.3.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 88

Even with GPUs, training can be slow
VGG: ~2-3 weeks training with 4 GPUs
ResNet 101: 2-3 weeks with 4 GPUs

NVIDIA Titan Blacks
~$1K each

ResNet reimplemented in Torch: http://torch.ch/blog/2016/02/04/resnets.html

http://torch.ch/blog/2016/02/04/resnets.html

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Multi-GPU training: More complex

89

Alex Krizhevsky, “One weird trick for parallelizing convolutional neural networks”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Google: Distributed CPU training

90

Data parallelism

[Large Scale Distributed Deep Networks, Jeff
Dean et al., 2013]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Google: Distributed CPU training

91

Model parallelismData parallelism

[Large Scale Distributed Deep Networks, Jeff
Dean et al., 2013]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Google: Synchronous vs Async

92

Abadi et al, “TensorFlow: Large-Scale Machine Learning on Heterogeneous
Distributed Systems”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 93

Bottlenecks
to be aware of

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 94

GPU - CPU communication is a bottleneck.
=>

CPU data prefetch+augment thread running

while

GPU performs forward/backward pass

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 95

CPU - disk bottleneck

Hard disk is slow to read from

=> Pre-processed images
stored contiguously in files, read as
raw byte stream from SSD disk

Moving parts lol

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 96

GPU memory bottleneck

Titan X: 12 GB <- currently the max
GTX 980 Ti: 6 GB

e.g.
AlexNet: ~3GB needed with batch size 256

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 97

Floating Point Precision

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- 64 bit “double” precision is default in a lot of programming

- 32 bit “single” precision is typically used for CNNs for performance

98

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- 64 bit “double” precision is default

in a lot of programming

- 32 bit “single” precision is typically
used for CNNs for performance
- Including in your homework!

99

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- Prediction: 16 bit “half”

precision will be the new
standard
- Already supported in cuDNN
- Nervana fp16 kernels are the

fastest right now
- Hardware support in next-gen

NVIDIA cards (Pascal)
- Not yet supported in Torch

100Benchmarks on Titan X, from https://github.com/
soumith/convnet-benchmarks

https://github.com/soumith/convnet-benchmarks

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- How low can we go?

- Gupta et al, 2015:  
Train with 16-bit fixed point with stochastic rounding

101

CNNs on
MNIST

Gupta et al, “Deep Learning with Limited Numerical Precision”, ICML 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- How low can we go?

- Courbariaux et al, 2015:  
Train with 10-bit activations, 12-bit parameter updates

102

Courbariaux et al, “Training Deep Neural Networks with Low Precision Multiplications”, ICLR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Floating point precision
- How low can we go?

- Courbariaux and Bengio, February 9 2016:
- Train with 1-bit activations and weights!
- All activations and weights are +1 or -1
- Fast multiplication with bitwise XNOR
- (Gradients use higher precision)

103

Courbariaux et al, “BinaryNet: Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1”, arXiv 2016

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Implementation details: Recap
- GPUs much faster than CPUs
- Distributed training is sometimes used

- Not needed for small problems
- Be aware of bottlenecks: CPU / GPU, CPU / disk
- Low precison makes things faster and still works

- 32 bit is standard now, 16 bit soon

104

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Recap
- Data augmentation: artificially expand your data
- Transfer learning: CNNs without huge data
- All about convolutions
- Implementation details

105

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 106

TensorFlow
https://www.tensorflow.org

https://www.tensorflow.org

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow

- From Google

- Very similar to Theano - all about computation graphs

- Easy visualizations (TensorBoard)

- Multi-GPU and multi-node training

107

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

108

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net
Create placeholders for
data and labels: These
will be fed to the graph

109

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

Create Variables to hold
weights; similar to Theano
shared variables

Initialize variables with
numpy arrays

110

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

Forward: Compute scores,
probs, loss (symbolically)

111

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

Running train_step will
use SGD to minimize loss

112

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

Create an artificial dataset;
y is one-hot like Keras

113

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Two-Layer Net

Actually train the model

114

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Tensorboard

Tensorboard makes it easy to visualize
what’s happening inside your models

115

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Tensorboard
Tensorboard makes it easy to
visualize what’s happening
inside your models

Same as before, but now we
create summaries for loss and
weights

116

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Tensorboard

Tensorboard makes it easy to
visualize what’s happening inside
your models

Create a special “merged”
variable and a SummaryWriter
object

117

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Tensorboard

Tensorboard makes it easy to
visualize what’s happening inside
your models

In the training loop, also run
merged and pass its value to the
writer

118

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Tensorboard

Start Tensorboard server, and we get graphs!

119

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: TensorBoard

120

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: TensorBoard

Add names to placeholders
and variables

121

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: TensorBoard
Add names to placeholders and
variables

Break up the forward pass with
name scoping

122

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: TensorBoard

Tensorboard shows the graph!

123

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: TensorBoard

Tensorboard shows the graph!

Name scopes expand to show
individual operations

124

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Multi-GPU

Data parallelism:  
synchronous or asynchronous

125

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Multi-GPU
Data parallelism:  
synchronous or asynchronous

126

Model parallelism:  
Split model across GPUs

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Distributed
Single machine:
Like other frameworks

127

Many machines:
Not open source (yet) =(

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Pretrained Models

- You can get a pretrained models here:
-https://github.com/tensorflow/models

- Has inception, resnet, some different autoencoders

128

https://github.com/tensorflow/models

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

TensorFlow: Pros / Cons

(+) Python + numpy
(+) Computational graph abstraction, like Theano; great for RNNs
(+) Much faster compile times than Theano
(+) Slightly more convenient than raw Theano?
(+) TensorBoard for visualization
(+) Data AND model parallelism; best of all frameworks
(+/-) Distributed models, but not open-source yet
(-) Slower than other frameworks right now
(-) Much “fatter” than Torch; more magic
(-) Not many pretrained models

129

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Torch
http://torch.ch/docs/getting-started.html

130

http://torch.ch/docs/getting-started.html

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Torch Overview

- From NYU + IDIAP
- Written in C and Lua
- Used a lot a Facebook, DeepMind

131

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Torch: Pretrained Models

- loadcaffe: Load pretrained Caffe models: AlexNet, VGG, some others 
https://github.com/szagoruyko/loadcaffe

- GoogLeNet v1: https://github.com/soumith/inception.torch

- GoogLeNet v3: https://github.com/Moodstocks/inception-v3.torch

- ResNet: https://github.com/facebook/fb.resnet.torch

132

https://github.com/szagoruyko/loadcaffe
https://github.com/soumith/inception.torch
https://github.com/Moodstocks/inception-v3.torch
https://github.com/facebook/fb.resnet.torch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Torch: Pros / Cons

(-) Lua
(-) Less plug-and-play than Caffe

You usually write your own training code
(+) Lots of modular pieces that are easy to combine
(+) Easy to write your own layer types and run on GPU
(+) Most of the library code is in Lua, easy to read
(+) Lots of pretrained models!
(-) Not great for RNNs

133

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Theano
http://deeplearning.net/software/theano/

134

http://deeplearning.net/software/theano/

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Theano Overview

- From Yoshua Bengio’s group at University of Montreal

- Embracing computation graphs, symbolic computation

- High-level wrappers: Keras, Lasagne

- Has Conditional flow (ifelse, switch)

135

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Theano: Pretrained Models

- Lasagne Model Zoo has pretrained common architectures:
- https://github.com/Lasagne/Recipes/tree/master/modelzoo

- AlexNet with weights: https://github.com/uoguelph-mlrg/theano_alexnet

- sklearn-theano: Run OverFeat and GoogLeNet forward, but no fine-
tuning? http://sklearn-theano.github.io

- caffe-theano-conversion: CS 231n project from last year: load
models and weights from caffe! Not sure if full-featured https://github.com/kitofans/
caffe-theano-conversion

136

Best choice

https://github.com/Lasagne/Recipes/tree/master/modelzoo
https://github.com/uoguelph-mlrg/theano_alexnet
http://sklearn-theano.github.io
https://github.com/kitofans/caffe-theano-conversion

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Theano: Pros / Cons

(+) Python + numpy
(+) Computational graph is nice abstraction
(+) RNNs fit nicely in computational graph
(-) Raw Theano is somewhat low-level
(+) High level wrappers (Keras, Lasagne) ease the pain
(-) Error messages can be unhelpful
(-) Large models can have long compile times
(-) Much “fatter” than Torch; more magic
(-) Patchy support for pretrained models

137

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Overview

138

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU:
Data parallel

Yes Yes
cunn.DataParallelTable

Yes 
platoon

Yes

Multi-GPU:
Model parallel

No Yes 
fbcunn.ModelParallel

Experimental Yes (best)

Readable
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)

