


Announcements!

- HW #3 misunderstandings
- Deadline for HW #3 re-try is next Thursday April 6
- Final Project milestones due next Tuesday April 4

- Vote for Final Day and Location

comp150dI (‘::'I’ufts



Python/Numpy of the Day
Decorators

How to write a decorator: How to use a decorator:

import time

def timeit(method): class Foo(object):

def timed(*args, **kw):

ts = time.time() @timeit
result = method(*args, **kw) def foo(self, a=2, b=3):
te = time.time() time.sleep(0.2)
print "%r (%r, %r) %2.2f sec' ¥ \ @timeit

(method.__name__, args, kw, te-ts) def f10):
return result Rty

time.sleep(l)
return timed print 'fl1'

comp150d| @'I\lfts



Grouping in vision

* Goals:
— Gather features that belong together

— Obtain an intermediate representation that compactly
describes key image (video) parts

« Top down vs. bottom up segmentation

— Top down: pixels belong together because they are
from the same object

— Bottom up: pixels belong together because they look
similar

« Hard to measure success
— What is interesting depends on the app.



Examples of grouping in vision
i CAE)

>

R o : -
[http://poseidon.csd.auth.gr/LAB_RESEARCH/Latest/imgs/S
peakDepVidIndex_img2.jpg]

Group video frames into shots

[Figure by J. Shi]

Determine image regions

[Figure by Wang & Suter]

Figure-ground

[Figure by Grauman & Darrell]

Object-level grouping



Edge and line detection

e Canny edge detector =
smooth = derivative = thin 2
threshold = link

* Generalized Hough transform =
points vote for shape parameters

e Straight line detector =
canny + gradient orientations =2
orientation binning =2 linking 2
check for straightness




Segmentation

K
T
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Computer Vision Tasks

Classification
+ Localization

Object Detection Segmentation

Classification

CAT, DOG, DUCK CAT, DOG, DUCK
PN 4

Y Y
Single object Multiple objects

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d B.Ihfts 8



Computer Vision Tasks

Segmentation

* Original slides borrowed from Andrej Karpathy 9
and Li Fei-Fei, Stanford cs231n comp150d| @mfts



Image segmentation: toy example

white
| pixels
I= black pixels
3 S P gray |
2 8 il / pixels ]
T, 150 J
o
input image -
intensity

» These intensities define the three groups.

* We could label every pixel in the image according to
which of these primary intensities it is.
* i.e., segmentthe image based on the intensity feature.

« What if the image isn’t quite so simple?

Kristen Grauman
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Kristen Grauman



6000

5000 +

4000

3000

2000

pixel count

1000

input image -100 -50 0 50 100 150 200 250 300
intensity

* Now how to determine the three main intensities that
define our groups?

 We need to cluster.

Kristen Grauman



Clustering

« With this objective, it is a “chicken and egg” problem:

— If we knew the cluster centers, we could allocate
points to groups by assigning each to its closest center.
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— If we knew the group memberships, we could get the
centers by computing the mean per group.
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Smoothing out cluster assignments

« Assigning a cluster label per pixel may yield outliers:

‘

original labeled by cluster center’s
intensity

|?

3
d:

« How to ensure they are
spatially smooth?

Kristen Grauman



Solution

T
Pty

P(foreground | image)

Encode dependencies between pixels

Normalizing constant
~

P(y:0.data) = — [ | £,(y:0.data) [] £2(;.y,:0.data)

1
]\ Z i=1.N ]\ i,jeedges /\

Labels to be predicted  Individual predictions Pairwise predictions



Writing Likelihood as an “Energy”

P(y;0,data) = — le(y,,e data) || p,(y»y;:0.data)

l 1..N i,jeedges

I

Energy(Y99 data) ZWl(yzﬂg data)—l_ ZWz(ywy]ag data)

/ i,jeedges

“Cost” of assignment y,

“Cost’ of pairwise assignment y; y;



Markov Random Fields

Node y;: pixel label

/
Edge: constrained
pairs
PE—

oo oo

Cost to assign a label to Cost to assign a pair of labels to

each pixel \ connected pixels \
Energy(y;0,data)=> "y (y;0,data)+ > y,(y,,y,;0,data)

i,jeedges Slide: Derek Hoiem



Markov Random Fields

Unary potential
* Example: “label smoothing” grid . Jogp(y. = 0 data)
1: -logP(y; = 1 ; data)
/

Pairwise Potential

0 1
0|0 K
11K 0

Energy(y;0,data)=> "y (y;0,data)+ > y,(y,,y,;0,data)

i,jeedges Slide: Derek Hoiem



Solving MRFs with graph cuts

Source (Label 0)

Cost to split nodes

-

-

Energy(y;6,data) = Zwl(y,,é’ data)+ Y w,(y;,y;0,data)

i,jeedges Slide: Derek Hoiem



Solving MRFs with graph cuts

Source (Label 0)

-
’4

':"Cost to assign to 0

Cost to split nodes

Cost to assign to 1
Sink (Label 1)

Energy(y;6,data) = Zwl(y,,é’ data)+ Y w,(y;,y;0,data)

i,jeedges Slide: Derek Hoiem



GrabCut segmentation

User provides rough indication of foreground region.

Goal: Automatically provide a pixel-level segmentation.



What is easy or hard about these cases for graphcut-based
segmentation?

Slide: Derek Hoiem



Easier examples




More difficult Examples

Initial
Rectangle ,

Initial
Result




Using graph cuts for recognition

building
&

airplane

TextonBoost (Shotton et al. 2009 1JCV)



Unsupervised Segmentation

- CIassio_ExampIe: Sample segmentation output
Superpixels ‘

- Cluster pixels with their
neighbors

- Break clusters when
large gradient occurs
between neighboring
pixels

- Figure from Achanta et al.
— “SLIC Superpixels
Compared to State-of-the-
art Superpixel Methods,”
May 2012

comp150dI G'I‘u_fts



Further reading and resources

* Graph cuts
— http://www.cs.cornell.edu/~rdz/graphcuts.html

— Classic paper: What Energy Functions can be Minimized via Graph Cuts?
(Kolmogorov and Zabih, ECCV '02/PAMI '04)

* Belief propagation
Yedidia, J.S.; Freeman, W.T.; Weiss, Y., "Understanding Belief Propagation and

Its Generalizations”, Technical Report, 2001:
http://www.merl.com/publications/TR2001-022/

* Normalized cuts and image segmentation (Shi and Malik)
http://www.cs.berkeley.edu/~malik/papers/SM-ncut.pdf

* N-cut implementation
http://www.seas.upenn.edu/~timothee/software/ncut/ncut.html
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http://mscoco.org
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http://mscoco.org

Semantic Segmentation

Label every pixel!

Don’t differentiate
instances (cows) tree sky ouilding

body 3 road airplane

grass grass

Figure credit: Shotton et al, “TextonBoost for Image Understanding: Multi-Class Object Recognition and Segmentation by Jointly Modeling Texture, Layout, and Context”, IJCV 2007

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts 30



Instance Segmentation

Detect instances,
give category, label
pixels

“simultaneous
detection and
segmentation” (SDS)

Lots of recent work
(MS-COCO
Challenges)

Figure credit: Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy :
and Li Fei-Fei, Stanford cs231n compisod €3 Tufts

person

person
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Semantic Segmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_:’Il’ufts



Semantic Segmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts



Semantic Segmentation

Extract
patch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts



Semantic Segmentation

Extract Run through
patch a CNN

= o

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmfts

.......

35



Semantic Segmentation

Extract Run through Classify
patch a CNN center pixel

= — j s cow

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| B.Ihfts 36

.........




Semantic Segmentation

Extract Run through Classify
patch a CNN center pixel
' \

Repeat for
every pixel

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts 37



Semantic Segmentation

Run “fully convolutional” network
to get all pixels at once

Smaller output
due to pooling

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts



Semantic Segmentation: Multi-Scale

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts
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Semantic Segmentation: Multi-Scale

Resize image to
multiple scales

""';7'-;’( m;::f\,

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts

40



Semantic Segmentation: Multi-Scale

Run one CNN
per scale

Resize image to
multiple scales

i (X000

convnel

r"};ltr(r:x;;«.f\, g g
\&( I)___/"-—’I..._f'g'i-‘}'_tf‘.

T 00 el

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts
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Semantic Segmentation: Multi-Scale

Run one CNN

Resize image to
per scale

multiple scales
P Upscale outputs

and concatenate

i (X0
convnel
/ pyramid ™ AN

gl ,"‘-_Tr (Xe.) =
'Tfj'x(“p?_{'_};—f ‘.,/

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts
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Semantic Segmentation: Multi-Scale

Run one CNN

Resize image to
per scale

multiple scales

convnel

< >
7':2‘ (X \07—[-:,7»_7 ‘./’

External “bottom-up” : )

segmentation

J
\ 7

seperpixels mee T ACh)

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts

.....

Upscale outputs
and concatenate

(o) _} (¢ ._} (e -_) (¢ _",‘
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Semantic Segmentation: Multi-Scale

Run one CNN

Resize image to
per scale

multiple scales

Upscale outputs
and concatenate

Combine everything
for final outputs

convnel

/ pyramid ™
L Z( I)/.‘-_-«{ S (X0 )=
TP (X ) == ¥

~ labeling \

\_I(F,h(I)_/

_—

J‘. l\'
" s e
or (s (G
- ) N - - -
DIIOIEIC.

7~ segmentation ™\

External “bottom-up” " A .

segmentation

seperpixels mee T ACh)

Farabet et al, “Learning Hierarchical Features for Scene Labeling,” TPAMI 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @T\lfts



Semantic Segmentation: Refinement

Apply CNN once
to get labels

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts
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Semantic Segmentation: Refinement

Apply CNN once
to get labels

Apply AGAIN to
refine labels

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts
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Semantic Segmentation: Refinement

Apply CNN once
to get labels

\ .

Apply AGAIN to
refine labels

And again!
\

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts
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Semantic Segmentation: Refinement

Same CNN weights:
recurrent convolutional network

Apply CNN once
to get labels

Apply AGAIN to
refine labels

y

N\

And again!

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_:’Il’ufts
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Semantic Segmentation: Refinement

Same CNN weights:
recurrent convolutional network

Apply CNN once ¢
to get labels
|
Apply AGAIN to

refine labels
N
| 4

.
And again! L'_]
%

More iterations improve results

Pinheiro and Collobert, “Recurrent Convolutional Neural Networks for Scene Labeling”, ICML 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d em

49



Semantic Segmentation: Upsampling

forward /inference

-

backward /learning

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts



Semantic Segmentation: Upsampling

forward /inference

-

backward /learning

Learnable upsampling!

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts 51



Semantic Segmentation: Upsampling

32x upsampled
image oonvl  pooll  com2  pool2 conv3 pook3 convd poodd comd poalh  comvG-T prodiction (FCN-325)

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al G}Tufts
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Semantic Segmentation: Upsampling

32x upsampled
image oconvl  pooll  com2 pool2 convd pood3  convd pootd comvh poalh  convh-T prediction (FCN-32s)

..............

........

........

16x upsampled

2% convT o s
e prediction (FON-16Gs)

poald
“skip
connections”
Sx upsampled
Ix conv? prediction (FON-8s)
xpood | @ | | |

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| B.Ihfts
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Semantic Segmentation: Upsampling

32x upsampled
image oonvl  pooll  com2  pool2 conv3 pook3 convd poodd comd poalh  comvG-T prodiction (FCN-325)

16x upsampled
FCN-32s FCN-16s FCN-8s Ground truth

2X ConvT g
prediction (FON-16s)

poald
connections” .
BX upsampled
Ix coavy prediction (FON-Ss)

2x poold | |
pooks | | 1 }

Skip connections = Better results

Long, Shelhamer, and Darrell, “Fully Convolutional Networks for Semantic Segmentation”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al G}Tufts
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Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 1 pad 1

Input: 4 x 4 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d c_vmfts
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Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 1 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts



Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 1 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts



Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 2 pad 1

Input: 4 x 4 Output: 2 x 2

* Original slides borrowed from Andrej Karpathy oY
and Li Fei-Fei, Stanford cs231n comp150d c_vmfts
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Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts



Learnable Upsampling: "Deconvolution”

Typical 3 x 3 convolution, stride 2 pad 1

>

Dot product
between filter
and input

Input: 4 x 4 Output: 2 x 2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts



Learnable Upsampling: "Deconvolution”

3 x 3 “deconvolution”, stride 2 pad 1

Input: 2 x 2 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy oY
and Li Fei-Fei, Stanford cs231n comp150d c_vmfts
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Learnable Upsampling: "Deconvolution”

3 x 3 “deconvolution”, stride 2 pad 1

>

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts



Learnable Upsampling: "Deconvolution”

3 x 3 “deconvolution”, stride 2 pad 1

>

Input gives
weight for
filter

Input: 2 x 2 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts



Learnable Upsampling: "Deconvolution”

Sum where

3 x 3 “deconvolution”, stride 2 pad 1
output overlaps

> X
Input gives
weight for
filter
Input: 2 x 2 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts



Learnable Upsampling: "Deconvolution”

Sum where

3 x 3 “deconvolution”, stride 2 pad 1
output overlaps

/ Same as backward pass for
4 normal convolution!
> X
Input gives
weight for
filter
Input: 2 x 2 Output: 4 x 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts



Learnable Upsampling: "Deconvolution”

3 x 3 “deconvolution”, stride 2 pad 1

Input: 2 x 2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

> X
Input gives
weight for
filter
Output: 4 x 4

comp150d| {(:‘}Thfts

Sum where
output overlaps

Same as backward pass for
normal convolution!

“Deconvolution” is a bad
name, already defined as
“inverse of convolution”

Better names:

convolution transpose,
backward strided convolution,
1/2 strided convolution,
upconvolution

66



Learnable Upsampling: "Deconvolution”

‘It is more proper to say “convolutional transpose operation”
rather than “deconvolutional” operation. Hence, we will be using
the term “convolutional transpose™ from now.

Im et al, “Generating images with recurrent adversarial networks”, arXiv 2016

“‘Deconvolution” is a bad
name, already defined as

A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called sinverse of convolution”

deconvolutions)

Radford et al, “Unsupervised Representation Learning with Deep
Convolutional Generative Adversarial Networks”, ICLR 2016 Better names:

convolution transpose,
backward strided convolution,
1/2 strided convolution,
upconvolution

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_Q'I‘Ufts 67



Semantic Segmentation: Upsampling

Deconvolution network
56 % 56
N x 28

Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts
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Semantic Segmentation: Upsampling

224x 1
Deconvolution network P
56x 56
LEFL)
jdx )4
sobng
U g
e — — ]
™~ Unpoding
Normal VGG “Upside down” VGG
Noh et al, “Learning Deconvolution Network for Semantic Segmentation”, ICCV 2015 6 days of training on Titan X...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @Tufts



Instance Segmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_:’Il’ufts



Instance Segmentation

Detect instances,
give category, label
pixels

“simultaneous
detection and
segmentation” (SDS)

Lots of recent work
(MS-COCO)

Figure credit: Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy :
and Li Fei-Fei, Stanford cs231n compisod €3 Tufts

person

person
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Instance Segmentation

Similar to R-CNN, but
with segments

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d 8Tufts
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Instance Segmentation

Proposal gXtema' t
Generation egmen
proposals

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts

Similar to R-CNN, but
with segments
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Instance Segmentation

Similar to R-CNN, but

with segments
Proposal gXter:I”arllt Feature J
Generation egme Extraction
proposals

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp1sodl €9 Tufts 74



Instance Segmentation

Similar to R-CNN, but

with segments
Proposal g’e(ter:]”eari t Feature J
Generation 9 Extraction
proposals

| _Region
CNN

Mask out background
with mean image

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts 75



Instance Segmentation

Proposal gxtenrnnarll t Feature Region
Generation egme Extraction Classification
proposals

Person?
+1.8

¢ i)

| _Region
CNN

Mask out background
with mean image

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts



Instance Segmentation

External
Segment
proposals

Proposal
Generation

Feature Region Region
Extraction Classification Refinement

Person?
+1.8

¢ i)

| _Region
CNN

Mask out background
with mean image

Hariharan et al, “Simultaneous Detection and Segmentation”, ECCV 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts
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Instance Segmentation: Hypercolumns

Region Region
Classification Refinement
Person?

+1.8

Hariharan et al, “Hypercolumns for Object Segmentation and Fine-grained Localization”, CVPR 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d C‘.;'I‘u'fts
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Instance Segmentation: Cascades

Similar to
Faster R-CNN

Won COCO 2015
challenge
(with ResNet)

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts
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Instance Segmentation: Cascades

Similar to
Faster R-CNN

Won COCO 2015
challenge
(with ResNet)

conv feature map

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| (_Q'I‘ufts 80



Instance Segmentation: Cascades

Region proposal network (RPN)

box instances (Rols)

Similar to
Faster R-CNN

Won COCO 2015 convf:at re ma
challenge e
(with ResNet)

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp1sodl €9 Tufts
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Instance Segmentation: Cascades

Region proposal network (RPN)

box instances (Rols)

Similar to

Faster R-CNN Reshape boxes to

fixed size,
figure / ground
logistic regression

mask instances

(M

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

Won COCO 2015
challenge
(with ResNet)

conv feature map

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_Q'I‘ufts



Instance Segmentation: Cascades

Region proposal network (RPN)

box instances (Rols)

Similar to

Faster R-CNN Reshape boxes to

fixed size,
figure / ground
logistic regression

mask instances

CONVs

—

CONVs

- >

Mask out background,
predict object class

categorized Instances

Won COCO 2015
challenge
(with ResNet) masking

conv feature map

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_g’rufts



Instance Segmentation: Cascades

Region proposal network (RPN)

box instances (Rols)

Similar to

Faster R-CNN Reshape boxes to Learn entire model

fixed size, end-to-end!
figure / ground
logistic regression

mask instances

CONVs

—

CONVs

- >

Mask out background,
predict object class

categorized Instances

Won COCO 2015
challenge
(with ResNet) masking

conv feature map

Dai et al, “Instance-aware Semantic Segmentation via Multi-task Network Cascades”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_g’rufts
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Instance Segmentation: Cascades

Dai et al, “Instance-aware Semantic E - -

Segmentation via Multi-task Network

Cascades”, arXiv 2015 Predictions Ground truth
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| (_%rrllfts
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Evaluation metrics

Detection Score: Average Precision (mAP is mean AP over all object categories)
. AP is averaged over multiple loU values between 0.5 and 0.95 (and categories, size)

. More comprehensive comparison metric than the traditional AP at Intersection over Union (loU)
threshold of 0.5.

[] | | U [ [

LU O OO0 ([ U [

loU =0.5 loU =0.7 loU=0.9
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Evaluation Metrics

Detection Score: AP
* AP s averaged over multiple loU values between 0.5 and 0.95
« AP is averaged over groups of objects or over object size in an image

*  More comprehensive metric than the traditional AP at Intersection over Union (loU)
threshold of 0.5.

A < 32x32 A > 96x96

comp150dI ﬁl‘ufts
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Evaluating Detection or Segmentation

To calculate AP we need:

Bounding Box loU Mask loU

..........
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Segmentation Overview

Graph Cut
- Classic algorithm to quickly get foreground from background segmentation
- Not trained to consider object shape prior
- Can fail with complicated backgrounds
Unsupervised Segmentation
- Superpixels
- Open area of research in ML
Semantic segmentation
- Classify all pixels
- Fully convolutional models, downsample then upsample
- Learnable upsampling: fractionally strided convolution
- Skip connections can help
Instance Segmentation
- Detect instance, generate mask
- Similar pipelines to object detection

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d c_vmfts
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Pose Estimation

90



Classic Problem:
Activity Recognition

What is this person doing?

..........
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Human pose estimation & Object detection

Human pose Difficult part
estimation 1s appearance
challenging.

Self-occlusion

Image region looks
like a body part

Felzenszwalb & Huttenlocher, 2005
Ren et al, 2005

Ramanan, 2006

Ferrari et al, 2008

Yang & Mori, 2008

Andriluka et al, 2009

Eichner & Ferrari, 2009

92
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Human pose estimation & Object detection

Human pose
estimation is
challenging.

Felzenszwalb & Huttenlocher, 2005
Ren et al, 2005

Ramanan, 2006

Ferrari et al, 2008

Yang & Mori, 2008

Andriluka et al, 2009

Eichner & Ferrari, 2009

93
Slide Credit: Yao/Fei-Fei



Human pose estimation & Object detection

~. 7

Facilitate

Given the
object is
detected.

94
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Human pose estimation & Object detection

- I Object

»»»»»»»»»»» detection is

Small, low-resolution, challenging
partially occluded

Image region similar to
detection target

* Viola & Jones, 2001
* Lampert et al, 2008
* Divvala et al, 2009
* Vedaldi et al, 2009

95
Slide Credit: Yao/Fei-Fei



Human pose estimation & Object detection

Object
detection is
challenging

* Viola & Jones, 2001
* Lampert et al, 2008
* Divvala et al, 2009
* Vedaldi et al, 2009

9
Slide Credit: Yao/Fei-Fei



Human pose estimation & Object detection

-~ ==

Facilitate

Given the
pose is
estimated.

97
Slide Credit: Yao/Fei-Fei



Human pose estimation & Object detection

\__/
Mutual Context

98
Slide Credit: Yao/Fei-Fei



Multi-Person Pose Estimation using Part Affinity Fields

Zhe Cao, Shih-En Wei, Tomas Simon, Yaser Sheikh
Carnegie Mellon University

ol

ROBOTICS
INSTITUTE
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Top-down Approach: Person Detection + Pose Estimation

Top-down

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 100
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Top-down
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Top-down Approach: Person Detection + Pose Estimation

Top-down
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Top-down Approach: Person Detection + Pose Estimation

Top-down

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 103



Top-down Approach: Person Detection + Pose Estimation

Top-down

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 104



Our Method: Parts Detection + Parts Association

Top-down Ours

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 105



Our Method: Parts Detection + Parts Association

Top-down Ours

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 106



Our Method: Parts Detection + Parts Association

Top-down Ours

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 107



Our Method: Parts Detection + Parts Association

Top-down Ours

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 108



Our Method: Parts Detection + Parts Association

Top-down

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 109



Our Method: Parts Detection + Parts Association

Top-down Part Affinity Fields

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 110



Our Method: Parts Detection + Parts Association

Top-down

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models
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Our Method: Parts Detection + Parts Association

Top-down Part Affinity Fields

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 112



Our Method: Parts Detection + Parts Association

Top-down Ours

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 113



Novelty: Jointly Learning Parts Detection and Parts Association

Parts

/ Detection

Image |—  CNN J

\ Parts

Association

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models



Sequential Prediction with Learned Spatial Context

Stage 1
Right shoulder

Right wrist

Right knee

Convolutional Pose Machines, Wei, Ramakrishna, Kanade, Sheikh, CVPR 2016

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 115



Sequential Prediction with Learned Spatial Context

Stage 1

Convolutional Pose Machines, Wei, Ramakrishna, Kanade, Sheikh, CVPR 2016

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 116



Sequential Prediction with Learned Spatial Context

Stage 1

Right Wrist - Stage 1

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 117



Sequential Prediction with Learned Spatial Context

Right Wrist - Stage 1

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 118



Sequential Prediction with Learned Spatial Context

Right Wrist - Stage 1 Right Wrist - Stage 2

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models
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Sequential Prediction with Learned Spatial Context

Right Wrist - Stage 1 Right Wrist - Stage 2 Right Wrist - Stage T

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 120



Part-Person Association for Multi-Person Pose Estimation

&
® ® Elbow
® ., @ @ Wrist
@
® O
O
O O ®
O
Part ® ©
detections

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 121



Part-Person Association for Multi-Person Pose Estimation

&
@) S O
o© PP O
@
® O
O
O O ®
O
Part ® ©
detections

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 122



Part-to-Part Association for Multi-Person Pose Estimation

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 123



Part Affinity Score Guides the Connection

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 124



Part Affinity Score Guides the Connection

® Elbow
® \Wrist
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Part Affinity Score Guides the Connection

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 126



How to Obtain the Part Affinity Score

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 127



Part Affinity Score is Dependent on Visual Appearance

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 128



Part Affinity Score is Dependent on Visual Appearance

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 129



Key Idea: Encode the Part Affinity Score on the Image Plane

S WS-
PESES 5 PR 1 -——————— —

Part Affinity Fields
encode direction and position

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 130



Part Affinity Fields Avoid Spatial Ambiguity

® Elbow — Correct Connection
® \Wrist — Wrong Connection

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 131



Jointly Learning Parts Detection and Parts Association

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 132



Jointly Learning Parts Detection and Parts Association

2nd Branch
Part Affinity
Fields

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 133
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* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models



Greedy Algorithm for Body Parts Association

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 136



Greedy Algorithm for Body Parts Association

® Elbow
® \Wrist

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 137



Greedy Algorithm for Body Parts Association

® Elbow
® Shoulder

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 138



Greedy Algorithm for Body Parts Association

S

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 139



* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models



Results on COCO Challenge Validation Set

Method
GT bbox + CPM [1]
Top-down
SSD [2] + CPM [1]

Our Method

Ours + Refinement

[1] Convolutional Pose Machines [Wei et al. 2016]
[2] SSD: Single Shot MultiBox Detector [Liu et al. 2015]

* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models

AP on val

63

53

58.5

61
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https://youtu.be/pW6nZXeWIGM
* Slide: Zhe Cao: “Multi-Person Pose Estimation Using Part Affinity Models 142



Evalutation: Keypoints

To calculate AP we need:

N\

Object
Keypoint
Similarity

Bounding Box loU Mask loU

comp150dI gm 143
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Object Keypoint Similarity -OKS
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