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Lecture 4: 
Backpropagation  

and 
Neural Networks (part 1)

Tuesday January 31, 2017



comp150dl

Announcements!
- If you are adversely affected by immigration ban, please talk to me about 

accommodations 

- Send in paper choices by tonight 

- Should be able to run Jupyter server on Tufts was and network machines 
now 

- (deep-venv)> pip install --upgrade jupyter 

- hw1 deadline in two days — Thurs Feb 2: Don’t forget to read the course 
notes. 

- Redo calculation of dL/dW for hinge loss
2
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Python/Numpy of the Day 

- y_pred = scores.argmax(axis=1) 

- inds = np.random.choice(X.shape[0],batch_size)

- randomly select N numbers in a range,

- useful for subsampling

- [:,np.newaxis]

- reshapes matrices of size (N,) to size (N,1)

3
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want

scores function

SVM loss

data loss + regularization

Where we are...
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(image credits  
to Alec Radford)

Optimization
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Gradient Descent

Numerical gradient: slow :(, approximate :(, easy to write :) 
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your 
implementation with numerical gradient
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Hinge Loss Gradient wrt Weights W

• We want the Jacobian Matrix of all 
gradients  

•  partial derivatives of all output 
dimensions by all input dimensions

7http://cs231n.github.io/optimization-1/#analytic

margin size, usually 1.0

For all rows of dW where the row corresponds to the  
GT value for that training instance, i.e. For all rows of dW where

http://cs231n.github.io/optimization-1/#analytic
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Softmax Loss Gradient wrt Score S 

8eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ 

* note change of subscripts from last slide

Skipping some steps for space, 
please see original notes. 

http://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/


comp150dl

Softmax Loss Gradient wrt Score S 

9eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/ 

Skipping some steps for space, 
please see original notes. 

http://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/
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Computational Graph

x

W

* hinge 
loss

R

+ L
s (scores)
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Convolutional Network 
(AlexNet)

input image 
weights

loss
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e.g. x = -2, y = 5, z = -4
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e.g. x = -2, y = 5, z = -4

Want: 
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:
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e.g. x = -2, y = 5, z = -4

Want: 

Chain rule:



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 24

f

activations
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f

activations

“local gradient”
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f

activations

“local gradient”

gradients
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f

activations

gradients

“local gradient”
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f

activations
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“local gradient”
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f

activations

gradients

“local gradient”
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:
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Another example:



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 39

Another example:

(-1) * (-0.20) = 0.20
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Another example:



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 41

Another example:

[local gradient] x [its gradient] 
[1] x [0.2] = 0.2 
[1] x [0.2] = 0.2  (both inputs!)
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Another example:
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Another example:

[local gradient] x [its gradient] 
x0: [2] x [0.2] = 0.4 
w0: [-1] x [0.2] = -0.2
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sigmoid function

sigmoid gate
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sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2
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Patterns in backward flow

add gate: gradient distributor 
max gate: gradient router 
mul gate: gradient… “switcher”?



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 47

Gradients add at branches

+
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Implementation:   forward/backward API

Graph (or Net) object. (Rough psuedo code)
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Example: Torch Layers
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Example: Torch Layers

=
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Example: Torch MulConstant

initialization

forward()

backward()
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Example: Caffe Layers
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Caffe Sigmoid Layer

*top_diff   (chain rule)
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Gradients for vectorized code

f

“local gradient”

This is now the 
Jacobian matrix 
(derivative of each 
element of z w.r.t. each 
element of x)

(x,y,z are now 
vectors)

gradients
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Vectorized operations

f(x) = max(0,x) 
(elementwise)

4096-d  
input vector

4096-d  
output vector
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Vectorized operations

f(x) = max(0,x) 
(elementwise)

4096-d  
input vector

4096-d  
output vector

Q: what is the 
size of the 
Jacobian matrix?

Jacobian matrix



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 60

max(0,x) 
(elementwise)

4096-d  
input vector

4096-d  
output vector

Q: what is the 
size of the 
Jacobian matrix? 
[4096 x 4096!]

Q2: what does it 
look like?

Vectorized operations

Jacobian matrix

f(x) = max(0,x) 
(elementwise)
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max(0,x) 
(elementwise)

100 4096-d  
input vectors

100 4096-d  
output vectors

Vectorized operations

in practice we process an 
entire minibatch (e.g. 100) 
of examples at one time:

i.e. Jacobian would technically be a 
[409,600 x 409,600] matrix :\

f(x) = max(0,x) 
(elementwise)
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Assignment: Writing SVM/Softmax 
Stage your forward/backward computation!

E.g. for the SVM:
margins
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Summary so far 

- neural nets will be very large: no hope of writing down gradient formula by 
hand for all parameters 

- backpropagation = recursive application of the chain rule along a 
computational graph to compute the gradients of all inputs/parameters/
intermediates 

- implementations maintain a graph structure, where the nodes implement 
the forward() / backward(). 

- forward: compute result of an operation and save any intermediates 
needed for gradient computation in memory 

- backward: apply the chain rule to compute the gradient of the loss 
function with respect to the inputs. 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 64

Neural Network so far:

(Before) Linear score function:
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

Neural Network so far:
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(Before) Linear score function:

(Now) 2-layer Neural Network 
      

x hW1 sW2

3072 100 10

Neural Network so far:
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Neural Network so far:

67

(Before) Linear score function:

(Now) 2-layer Neural Network 
      

x hW1 sW2

3072 100 10
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(Before) Linear score function:

(Now) 2-layer Neural Network 
       or 3-layer Neural Network

Neural Network so far:
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Full implementation of training a 2-layer Neural Network needs ~11 lines:

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Forward pass

Backward 
 pass

backprop 
of derivative
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Assignment: Writing 2layer Net 
Stage your forward/backward computation!
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sigmoid activation 
function
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Be very careful with your Brain analogies: 

Biological Neurons: 
- Many different types 
- Dendrites can perform complex non-

linear computations 
- Synapses are not a single weight but 

a complex non-linear dynamical 
system 

- Rate code may not be adequate

[Dendritic Computation. London and Hausser]
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Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU 
max(0.1x, x)

Maxout

ELU
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Neural Networks: Architectures

“Fully-connected” layers
“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”
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Example Feed-forward computation of a Neural Network

We can efficiently evaluate an entire layer of neurons.
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Example Feed-forward computation of a Neural Network



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 81

Setting the number of layers and their sizes

more neurons = more capacity
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(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/
karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html
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Summary 

- we arrange neurons into fully-connected layers 
- the abstraction of a layer has the nice property that it 

allows us to use efficient vectorized code (e.g. matrix 
multiplies) 

- neural networks are not really neural 
- neural networks: bigger = better (but might have to 

regularize more strongly)
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Next Lecture: 

More than you ever wanted to know 
about Neural Networks and how to 
train them.


