Lecture 4: Backpropagation and Neural Networks (part 1)

Tuesday January 31, 2017

Announcements!

- If you are adversely affected by immigration ban, please talk to me about accommodations
- Send in paper choices by tonight
- Should be able to run Jupyter server on Tufts was and network machines now
- (deep-venv)> pip install --upgrade jupyter
- hw1 deadline in two days - Thurs Feb 2: Don't forget to read the course notes.
- Redo calculation of dL/dW for hinge loss

Python/Numpy of the Day

- y_pred = scores.argmax(axis=1)
- inds $=$ np.random.choice(X.shape[0],batch_size)
- randomly select N numbers in a range,
- useful for subsampling
- [: , np.newaxis]
- reshapes matrices of size (N,) to size ($N, 1$)

Where we are...

$$
\begin{array}{lc}
s=f(x ; W)=W x & \text { scores function } \\
L_{i}=\sum_{j \neq y_{i}} \max \left(0, s_{j}-s_{y_{i}}+1\right) & \text { SVM loss } \\
L=\frac{1}{N} \sum_{i=1}^{N} L_{i}+\sum_{k} W_{k}^{2} & \text { data loss + regularization } \\
\text { want } \nabla_{W} L &
\end{array}
$$

Optimization

(image credits to Alec Radford)

Gradient Descent

$$
\frac{d f(x)}{d x}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Numerical gradient: slow :(, approximate :(, easy to write :) Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your implementation with numerical gradient

Hinge Loss Gradient wrt Weights W

$$
L_{i}=\sum_{j \neq y_{i}}\left[\max \left(0, w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta\right)\right]
$$

- We want the Jacobian Matrix of all gradients
- partial derivatives of all output dimensions by all input dimensions

$$
\nabla w L=\left[\begin{array}{cccc}
\nabla w_{1} L_{1} & \ldots & \ldots & \nabla w_{1} L_{N} \\
\vdots & \nabla w_{j} L_{i} & \ddots & \vdots \\
\nabla w_{k} L_{1} & \ldots & \ldots & \nabla w_{k} L_{N}
\end{array}\right]
$$

For all rows of $d W$ where the row corresponds to the
GT value for that training instance, i.e. $\mathrm{j}=\mathrm{y}_{\mathrm{i}}$

$$
\nabla_{w_{r_{i}}} L_{i}=-\left(\sum_{j \neq y_{i}} \mathbb{1}\left(w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta>0\right)\right) x_{i}
$$

For all rows of $d W$ where $j \neq y_{i}$

$$
\nabla_{w_{j}} L_{i}=1\left(w_{j}^{T} x_{i}-w_{y_{i}}^{T} x_{i}+\Delta>0\right) x_{i}
$$

Softmax Loss Gradient wrt Score S

* note change of subscripts from last slide

$$
\begin{aligned}
& a_{j}=w_{j}^{T} x_{j} \\
& S_{j}=\frac{e^{a_{j}}}{\sum_{k=1}^{N} e^{a_{k}}} \quad \forall j \in 1 \ldots N \\
& \frac{\partial S_{i}}{\partial a_{j}}=\frac{\partial \frac{e^{a_{i}}}{\sum_{k=1}^{e} e^{a_{k}}}}{\partial a_{j}} \\
& \nabla a_{j} S_{i}, \text { when } i=j \\
& \frac{\partial \frac{e^{a_{i}}}{\sum_{k=1}^{e^{a_{k}}}}}{\partial a_{j}}=\frac{e^{a_{i}} \Sigma-e^{a_{j}} e^{a_{i}}}{\Sigma^{2}} \\
& =\frac{e^{a_{i}}}{\Sigma} \frac{\Sigma-e^{a_{j}}}{\Sigma} \\
& =S_{i}\left(1-S_{j}\right) \\
& \nabla a_{j} S_{i} \text {, when } i \neq j
\end{aligned}
$$

$$
\begin{aligned}
& =-\frac{e^{a_{j}}}{\Sigma} \frac{e^{a_{i}}}{\Sigma} \\
& =-S_{j} S_{i}
\end{aligned}
$$ please see original notes.

$$
\nabla a_{j} S_{i}=S_{i}\left(\mathbb{1}(i=j)-S_{j}\right)
$$

Softmax Loss Gradient wrt Score S

$$
a_{j}=w_{j}^{T} x_{j}
$$

$S_{j}=\frac{e^{a_{j}}}{\sum_{k=1}^{N} e^{a_{k}}} \quad \forall j \in 1 . . N$

$$
\nabla a_{j} S_{i}=S_{i}\left(\mathbb{1}(i=j)-S_{j}\right)
$$

$$
\nabla S_{i} L=\frac{\partial}{\partial S_{i}}-\log \left(S_{i}\right)=S_{j}-\mathbb{1}(i=j)
$$

$$
\nabla W_{j} L=\frac{\partial L}{\partial S_{i}} * \frac{\partial S_{i}}{\partial W_{j}}=\left(S_{j}-\mathbb{1}(i=j)\right) x_{i}
$$

Skipping some steps for space, please see original notes.

Computational Graph

Convolutional Network (AlexNet)

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$\frac{\partial f}{\partial z}$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$\frac{\partial f}{\partial z}$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Chain rule:

$$
\frac{\partial f}{\partial y}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial y}
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

$$
\begin{aligned}
& f(x, y, z)=(x+y) z \\
& \text { e.g. } x=-2, y=5, z=-4
\end{aligned}
$$

$$
q=x+y \quad \frac{\partial q}{\partial x}=1, \frac{\partial q}{\partial y}=1
$$

$$
f=q z \quad \frac{\partial f}{\partial q}=z, \frac{\partial f}{\partial z}=q
$$

Want: $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}$

Chain rule:

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial q} \frac{\partial q}{\partial x}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$\begin{array}{lllll}f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow\end{array}$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$\left.\left.\begin{array}{lll|lll}f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & & f(x)=\frac{1}{x} & \rightarrow\end{array}\right] \frac{d f}{d x}=-1 / x^{2}\right]$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$\left.\left.\begin{array}{lll|lll}f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & & f(x)=\frac{1}{x} & \rightarrow\end{array}\right] \frac{d f}{d x}=-1 / x^{2}\right]$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$		\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	$\frac{d f}{d x}=-1 / x^{2}$	
		\rightarrow	$\frac{d f}{d x}=1$		

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow		
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow		$\frac{d f}{d x}=-1 / x^{2}$
:---						

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow		
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow		$\frac{d f}{d x}=-1 / x^{2}$
:---						

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow		
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow		$\frac{d f}{d x}=-1 / x^{2}$
:---						

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow		
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow		$\frac{d f}{d x}=-1 / x^{2}$
:---						

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|ll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$f(x)=e^{x}$	\rightarrow	$\frac{d f}{d x}=e^{x}$	$f(x)=\frac{1}{x}$	\rightarrow	$\frac{d f}{d x}=-1 / x^{2}$
$f_{a}(x)=a x$	\rightarrow	$\frac{d f}{d x}=a$	$f_{c}(x)=c+x$	\rightarrow	$\frac{d f}{d x}=1$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

Another example: $\quad f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}}$

$$
\begin{array}{lll|lll}
f(x)=e^{x} & \rightarrow & \frac{d f}{d x}=e^{x} & f(x)=\frac{1}{x} & \rightarrow & \frac{d f}{d x}=-1 / x^{2} \\
f_{a}(x)=a x & \rightarrow & \frac{d f}{d x}=a & f_{c}(x)=c+x & \rightarrow & \frac{d f}{d x}=1
\end{array}
$$

sigmoid function

$$
\begin{aligned}
& f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \\
& \sigma(x)=\frac{1}{1+e^{-x}} \\
& \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\end{aligned}
$$

sigmoid function

$$
\begin{aligned}
& f(w, x)=\frac{1}{1+e^{-\left(w_{0} x_{0}+w_{1} x_{1}+w_{2}\right)}} \\
& \sigma(x)=\frac{1}{1+e^{-x}} \\
& \frac{d \sigma(x)}{d x}=\frac{e^{-x}}{\left(1+e^{-x}\right)^{2}}=\left(\frac{1+e^{-x}-1}{1+e^{-x}}\right)\left(\frac{1}{1+e^{-x}}\right)=(1-\sigma(x)) \sigma(x)
\end{aligned}
$$

Patterns in backward flow

Gradients add at branches

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

```
class ComputationalGraph(object):
    #..
    def forward(inputs):
        # 1. [pass inputs to input gates...]
        # 2. forward the computational graph:
        for gate in self.graph.nodes_topologically_sorted():
        gate.forward()
        return loss # the final gate in the graph outputs the loss
    def backward():
        for gate in reversed(self.graph.nodes_topologically_sorted()):
        gate.backward() # little piece of backprop (chain rule applied)
        return inputs_gradients
```


Implementation: forward/backward API

class MultiplyGate(object):
def forward (x, y) :
$z=x^{*} y$
return z
def backward(dz):
\# $\mathrm{dx}=\ldots$ \#todo
\# dy = . . . \#todo
return [dx, dy]

$$
\frac{\partial L}{\partial x}
$$

Implementation: forward/backward API


```
class MultiplyGate(object):
    def forward(x,y):
        z = x*y
        self.x = x # must keep these around!
        self.y = y
        return z
def backward(dz):
    dx = self.y * dz # [dz/dx * dL/dz]
    dy = self.x * dz # [dz/dy * dL/dz]
    return [dx, dy]
```


(x,y,z are scalars)

Example: Torch Layers

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

PMax la
semoving the reaciremert for providing sizs in mn Mal
lgnow upditeOradinput if sell gradinput is nil
assets in MawCrterion and ParalelCrteion add

(A) MulMarpinCiterionlua

A Mmone has
B Namonficle lu:
B Nomalice Lua
SPRetulus
DP Pationg ha
(1) PainaiseOintarce laa

A Pralleliua
© PrnielCratetorlay
A Pirnlerticiela
A Powerk
B BRADUE md
BRPatulua
PRelulua
B) Replleate has

A Reshagelias

- Selectha
es stectitite ha
B Sequastalike
B Signoid ha
[8) Smocel ICTiterion lus
- Soltharla
intial foump of toch7 tee
typels in Namow nat done in place
Namortitie
Renove bem and badden fon Nomalise, beckese they albcibe nemon
Bufles for PRatU ouda inglensentation.
fred berken mn Pasting inget was retimed in backprof

fx a bug in corditional expession
nemits in 4 mortifon ind Pankivoluson abd
Paralel optmization. Pwaleertable inherbs Containec. unit teats
Use UNXX Ine endings
doc reathedocn
Add randomised leaky rectifed linear unt (fiowl.U)
abts inglare Rellil and fres a moterkal dibuty-rem in mingl
Replicule batchMode
Added more inlormative perthypinting
fitiel teremp ef twath ter
me Modile preserve type iharing semintica (1818T, add madule apply
fing Sequertial senove comer case
intial fevane of touch7 thee
Add Siasherage to crterions in the constuclar

Permentur

Example: Torch Layers

self, inplase - ip or false
If (ip and type(1p) \sim 'boolean') then
error('in-place flag must be boolean')
end
function Mulconstant aplateoutput(input)
function MulConst ant supolateoutput (iqput)
If self, inplace thes
isput:sul(self.constant_walar)
salf_output = input
*1se
salf_outpot:resizaAs(inpot)
self_output :copy(input)
self_outpot:copy(input)
self_output imul(self.constant_scalar)
end
retarn self.output
function MulConstant :upolatebraalnput(1aput, graobutput)
If self.grasInput then
if self. Inplace then
gradoutput: :mil(self_constant_scalar)
self-gradInput = gradoutput
restore previows ingut valos
Anput:alv(selr.conatant_acalar)
else
self.gradInput : resizedas(grasoutput)
self.gradInput icopy(grasoutput)
self_gradinput: inul(self.constant_scalar)
and
return self.gradloput
(nd

Example：Caffe Layers

－－－－－＋－		－－＊－	＊－man＝	＝－m－	nowr	
－2－－－－		－－－＊＊＊		－	\cdots	
		－＝	－			
＊－s－－	＝		－	－－－	－m－	－－
term	－	＋m－	temars	บสะ上－	tere	
＊－＊	－－－	－	Sm－7．00	－m－	＝－	
	－man	\pm	4－qm\％	nemer	－	
	－	\cdots	t－mem	＝	r－ma	
	－－－	\square	tumer＊	－ners	tura	
＝－m－	$\underline{\underline{-1}}$	\％	－mers	－－－	＋10\％	
	－	－	成䊼	newe	＋Ex＝	
＂－小－	－	＋＂	＊－x－s－	maxe	＝－	
	－	碞	＊－wime	－mmerser	tors	
	$\underline{\underline{-}}$	－	＊－＊＊＊	＝－a－	－	
＝－7－	－	－	＊－	－merner	＋m＊＊＊＊＊＊）	
	－－－	－	－－－＞	－－m－	\pm	
，－－－	－	＝		－	＋－＞	
\cdots	－－－	\square	＂－－－－	－－－	－	
	－	－	6－x＋e－	－	＝	
$\begin{aligned} & 4=n+w \\ & +\operatorname{tas}=\ln +\pi \end{aligned}$	－	场	－7－mm	－m－	－	
＝－2－	－	＝	＊－m＊	－mme	－	
E－n－	－－－	＂－	＂－m－	－－	\cdots	
	－10－	－	tanur	－	＋＂m	
	－－－	\cdots	＊－mma	－mmorn	\pm	
－xeme	－	$=$	t－raver	－nmer	＋10\％	
		－	＂－taner	－nme	－	
－ニー＊	－	＂tror	tinamera	s－mers	＋10x\％	
＝－n－	－－m	\cdots	¢－ッ－＊－	＝－－	＝	
	－	－	4m＝\％	－mer	＋＂\％	
＂－二－～	－	－	－200－	－－	\cdots	
	＝－r－	＝	－－－	－－－	\cdots	
：＝－mers	－－－	\pm	＊－－	－－－	－	
	－	－	－m－	－	－	
tm－	－me－	＊＊＊	＂－mer	－－m－	－	
nemor	－－－	\cdots	＊－mane＊	－2mersin	＋10＊＊	
S－m－	－－－	\square	－－m	－－－	\cdots	
	－	，	＊－	－	－	
\＆－－m	－	\pm	－－－－		－	

Caffe Sigmoid Layer

) If nunespace caffe

Sinclube svectors
ainclube erondas
Finclube siterutors
Binclube "coffe/layers/shuffle_layer.hpp"
fincluse "coffelutil/mathfunctions.hpo"
nanespoce coffe i
terplate stapenane otyper
vold Shufflecotype* botton_datd, Dtype* top dota, const ist itellusize,
conat bool forward, const int* shiffle orster, const int count) i
I/ data shape is expected to be the shope (count, M) of the blob
If dato in bottor_dato and top-doto
for (int $1=0 ; 1 \times$ count; $+*$ i) i
for (int $j=0 ; j<i$ ten_size; + +1) $\{$ if (formard) ?
tog-dote[1*iten_sizer]] = botton_dato[i*iten_stzershuffle_order[j]];
botton_data[i*iten_size+shuffle_order[j]) = top_dota[1*iten_size+j);

$$
\}^{?}
$$

$$
1^{3}
$$

$)^{1}$
template stypenane Dtyper
void Shufflelayere0typla: : LayerSetup(const vectorellobelipos**s botton, const vectoraliobeotyper*s top) (
$/ /$ Oneck there is only one botton laydr
ORCOLEP (betton, size(), 1):
OECCEQ TOOD bettond finctionality to >2.0 blobs, but for now only 20 mork // Oif(criocbotton(0)->shoge ().stre), 2);
shiffle_seed $=$ rand ; ;
// calculate count of eoph iten in butco
botchiter-size. = botton (e) -xcount(1 , botton (e)--ConontcalAxisindex(-1));
vectorkints shuffle_order;
If Make a vector of ordered Ind
for (int ief; ispottom(e)-shhope(1); iv*) shuffle_order.push_bock(1);
// Mirsenne twistar initialized with inpot seed
std::mt19917 pen(shuffle_seed.)
std::Shuffle(shuffle_order,beginO. ihuffle_order, end). gen):
// copy rondomized shuffle order to leyer nerber variable shuffie_order.

for (int $1=0 ; 1 \times$ shiffle_order,size (); $1++$) ? Shuffle_order_.wioble_qpu_doteC)[shuffle_order_-offset(i)] = shuffle_order[I]:
template stypenane Otyper
vold Shufflelayure)typis!!formard_cpu(const wectoreslobeitypts*s bottom.
const vectorellobotyper*st too) ?
const the count a top (el-3un
staricout er botton[(0)-之shope(i) *x stidizend!
stde:cout ex bottom(d)-3ihapt (1) ex stal:End!
vector<ints sem_shope; nem_shope.push_bock(count); nem_shope_push_bock(butch_iten_size_): botton (e)-sReshape (new-shape);
top (0) -skeshope (nen_shope)

(Dtyps* top_data = top [d] ->Nutable_cpu_doto 0 .
const int* shiffle_onder = shiffle_order_.cpu_data()

Shuffle botton dato, top,dot0, butch_iter_siae, formard, shuffle_order count):

botton (e) - - Reshope (ofig-shope)
1
tifplate etypurone Deyprs
woid Shuffieloyereotyper: : Boclomand_cpu(const vectoresiobeotiper*s top,
const int count a toel (0)-kne
victorcints orle_shope $=$ botton (el)-3shope):
vectorsintr new_shope; nex_shope.push_bock(count); new_shoge.push_bock(batch_iten_size.) botton'[e]-s.ileshapu(nem_stape):
top (0)->Reshape (new shape)

Otype* top_dato $=$ top $[$ ()-xmutobte_cpu_doto .
const int* ithifla_order = shuffle_order_-cpu_datac):
bool formard = false;
shuffle(botton_dats, top_dats, batch_iter_size_, forwand, shuffle_onder.
coult),

1
infoef CPULONT
shus_CPU(Shufflalayer'):
fendif
TNSTANTtate_Cuss (5huffletoyer):
itcisterlattrclass(Shuffle);
// namespace caffe

Gradients for vectorized code (x, y, z are now vectors)

This is now the Jacobian matrix (derivative of each element of z w.r.t. each element of x)

$\frac{\partial L}{\partial z}$
 gradients

Vectorized operations

Vectorized operations

$$
\frac{\partial L}{\partial x}=\frac{\partial f}{\partial x} \frac{\partial L}{\partial f}
$$

Jacobian matrix
input vector

Q: what is the size of the Jacobian matrix?

4096-d

output vector

Vectorized operations

$$
\frac{\partial L}{\partial x}=\frac{\partial f}{\partial x} \frac{\partial L}{\partial f}
$$

Vectorized operations

in practice we process an entire minibatch (e.g. 100) of examples at one time:
$1004096-d$
input vectors

Assignment: Writing SVM/Softmax Stage your forward/backward computation!


```
loss = data_loss + reg_loss
# backward pass (we have 5 lines)
dmargins = # ... (optionally, we go direct to dscores)
dscores = #...
dW = #...
```


Summary so far

- neural nets will be very large: no hope of writing down gradient formula by hand for all parameters
- backpropagation = recursive application of the chain rule along a computational graph to compute the gradients of all inputs/parameters/ intermediates
- implementations maintain a graph structure, where the nodes implement the forward() / backward().
- forward: compute result of an operation and save any intermediates needed for gradient computation in memory
- backward: apply the chain rule to compute the gradient of the loss function with respect to the inputs.

Neural Network so far:

(Before) Linear score function:

$$
f=W x
$$

Neural Network so far:

(Before) Linear score function:
(Now) 2-layer Neural Network

$$
f=W x
$$

$f=W_{2} \max \left(0, W_{1} x\right)$

Neural Network so far:

(Before) Linear score function:
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural Network so far:

(Before) Linear score function: $\quad f=W \boldsymbol{x}$
(Now) 2-layer Neural Network $\quad f=W_{2} \max \left(0, W_{1} x\right)$

Neural Network so far:

(Before) Linear score function: $\quad f=W x$
(Now) 2-layer Neural Network $f=W_{2} \max \left(0, W_{1} x\right)$ or 3-layer Neural Network

$$
f=W_{3} \max \left(0, W_{2} \max \left(0, W_{1} x\right)\right)
$$

Full implementation of training a 2-layer Neural Network needs ~11 lines:

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
```
X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ])
y = np.array([[0,1,1,0]]).T
syn0 = 2*np.random.random((3,4)) - 1
syn1 = 2*np.random.random((4,1)) - 1
for j in xrange(60000):
    l1 = 1/(1+np.exp(-(np.dot(X,syn0))))
    12 = 1/(1+np.exp (-(np.dot (11,syn1))))
    l2_delta = (y - l2)* (12* (1-12))
    l1_delta = l2_delta.dot(syn1.T) * (11 * (1-11))
syn0 += X.T.dot(11_delta)

Backward
```

syn1 += l1.T.dot(12_delta)

```
```

syn1 += l1.T.dot(12_delta)

```
backprop of derivative
from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

\section*{Assignment: Writing 2layer Net Stage your forward/backward computation!}
```


receive W1,W2,b1,b2 (weights/biases), X (data)

forward pass:

h1 = \#... function of X,W1,b1
scores = \#... function of h1,W2,b2
loss = \#... (several lines of code to evaluate Softmax loss)

backward pass:

dscores = \#...
dh1,dW2,db2 = \#...
dW1,db1 = \#...

```






Be very careful with your Brain analogies:

\section*{Biological Neurons:}
- Many different types
- Dendrites can perform complex nonlinear computations
- Synapses are not a single weight but a complex non-linear dynamical system
- Rate code may not be adequate

\section*{Activation Functions}

\section*{Leaky ReLU} \(\max (0.1 x, x)\)

\section*{Sigmoid}
\[
\sigma(x)=1 /\left(1+e^{-x}\right)
\]

\(\boldsymbol{t a n h} \tanh (x)\)


Maxout \(\max \left(w_{1}^{T} x+b_{1}, w_{2}^{T} x+b_{2}\right)\) ELU \(\quad f(x)= \begin{cases}x \\ a(\exp (x)-1) & \text { if } i x>0 \\ i x \leq 0\end{cases}\)


\section*{Neural Networks: Architectures}


\section*{Example Feed-forward computation of a Neural Network}
```

class Neuron:
\#
def neuron_tick(inputs):
""" assume inputs and weights are 1-D numpy arrays and bias is a number """
cell_body_sum = np.sum(inputs * self.weights) + self.bias
firing_rate = 1.0 / (1.0 + math.exp(-cell body sum)) \# sigmoid activation function
return firing_rate

```

We can efficiently evaluate an entire layer of neurons.

\section*{Example Feed-forward computation of a Neural Network}

```


forward-pass of a 3-layer neural network:

f = lambda x: 1.0/(1.0 + np.exp(-x)) \# activation function (use sigmoid)
x = np.random.randn(3, 1) \# random input vector of three numbers (3x1)
h1= f(np.dot(W1, x) + b1) \# calculate first hidden layer activations (4x1)
h2 = f(np.dot(W2, h1) + b2) \# calculate second hidden layer activations (4x1)
out = np.dot(W3, h2) + b3 \# output neuron (1\times1)

```

\section*{Setting the number of layers and their sizes}

more neurons \(=\) more capacity

Do not use size of neural network as a regularizer. Use stronger regularization instead:

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/ karpathy/convnetjs/demo/classify2d.html)

\section*{Summary}
- we arrange neurons into fully-connected layers
- the abstraction of a layer has the nice property that it allows us to use efficient vectorized code (e.g. matrix multiplies)
- neural networks are not really neural
- neural networks: bigger = better (but might have to regularize more strongly)

\section*{Next Lecture:}

\section*{More than you ever wanted to know about Neural Networks and how to train them.}```

