
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 1

Lecture 4:
Backpropagation

and
Neural Networks (part 1)

Tuesday January 31, 2017

comp150dl

Announcements!
- If you are adversely affected by immigration ban, please talk to me about

accommodations

- Send in paper choices by tonight

- Should be able to run Jupyter server on Tufts was and network machines
now

- (deep-venv)> pip install --upgrade jupyter

- hw1 deadline in two days — Thurs Feb 2: Don’t forget to read the course
notes.

- Redo calculation of dL/dW for hinge loss
2

comp150dl

Python/Numpy of the Day

- y_pred = scores.argmax(axis=1)

- inds = np.random.choice(X.shape[0],batch_size)

- randomly select N numbers in a range,

- useful for subsampling

- [:,np.newaxis]

- reshapes matrices of size (N,) to size (N,1)

3

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 4

want

scores function

SVM loss

data loss + regularization

Where we are...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 5

(image credits
to Alec Radford)

Optimization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 6

Gradient Descent

Numerical gradient: slow :(, approximate :(, easy to write :)
Analytic gradient: fast :), exact :), error-prone :(

In practice: Derive analytic gradient, check your
implementation with numerical gradient

comp150dl

Hinge Loss Gradient wrt Weights W

• We want the Jacobian Matrix of all
gradients

• partial derivatives of all output
dimensions by all input dimensions

7http://cs231n.github.io/optimization-1/#analytic

margin size, usually 1.0

For all rows of dW where the row corresponds to the
GT value for that training instance, i.e. For all rows of dW where

http://cs231n.github.io/optimization-1/#analytic

comp150dl

Softmax Loss Gradient wrt Score S

8eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

* note change of subscripts from last slide

Skipping some steps for space,
please see original notes.

http://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

comp150dl

Softmax Loss Gradient wrt Score S

9eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

Skipping some steps for space,
please see original notes.

http://eli.thegreenplace.net/2016/the-softmax-function-and-its-derivative/

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 10

Computational Graph

x

W

* hinge
loss

R

+ L
s (scores)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 11

Convolutional Network
(AlexNet)

input image
weights

loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 12

e.g. x = -2, y = 5, z = -4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 13

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 14

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 15

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 16

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 17

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 18

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 19

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 20

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 21

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 22

e.g. x = -2, y = 5, z = -4

Want:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 23

e.g. x = -2, y = 5, z = -4

Want:

Chain rule:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 24

f

activations

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 25

f

activations

“local gradient”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 26

f

activations

“local gradient”

gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 27

f

activations

gradients

“local gradient”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 28

f

activations

gradients

“local gradient”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 29

f

activations

gradients

“local gradient”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 30

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 31

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 32

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 33

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 34

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 35

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 36

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 37

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 38

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 39

Another example:

(-1) * (-0.20) = 0.20

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 40

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 41

Another example:

[local gradient] x [its gradient]
[1] x [0.2] = 0.2
[1] x [0.2] = 0.2 (both inputs!)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 42

Another example:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 43

Another example:

[local gradient] x [its gradient]
x0: [2] x [0.2] = 0.4
w0: [-1] x [0.2] = -0.2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 44

sigmoid function

sigmoid gate

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 45

sigmoid function

sigmoid gate

(0.73) * (1 - 0.73) = 0.2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 46

Patterns in backward flow

add gate: gradient distributor
max gate: gradient router
mul gate: gradient… “switcher”?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 47

Gradients add at branches

+

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 48

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 49

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 50

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 51

Example: Torch Layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 52

Example: Torch Layers

=

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 53

Example: Torch MulConstant

initialization

forward()

backward()

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 54

Example: Caffe Layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 55

Caffe Sigmoid Layer

*top_diff (chain rule)

comp150dl 56

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 57

Gradients for vectorized code

f

“local gradient”

This is now the
Jacobian matrix
(derivative of each
element of z w.r.t. each
element of x)

(x,y,z are now
vectors)

gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 58

Vectorized operations

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 59

Vectorized operations

f(x) = max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?

Jacobian matrix

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 60

max(0,x)
(elementwise)

4096-d
input vector

4096-d
output vector

Q: what is the
size of the
Jacobian matrix?
[4096 x 4096!]

Q2: what does it
look like?

Vectorized operations

Jacobian matrix

f(x) = max(0,x)
(elementwise)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 61

max(0,x)
(elementwise)

100 4096-d
input vectors

100 4096-d
output vectors

Vectorized operations

in practice we process an
entire minibatch (e.g. 100)
of examples at one time:

i.e. Jacobian would technically be a
[409,600 x 409,600] matrix :\

f(x) = max(0,x)
(elementwise)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 62

Assignment: Writing SVM/Softmax
Stage your forward/backward computation!

E.g. for the SVM:
margins

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 63

Summary so far

- neural nets will be very large: no hope of writing down gradient formula by
hand for all parameters

- backpropagation = recursive application of the chain rule along a
computational graph to compute the gradients of all inputs/parameters/
intermediates

- implementations maintain a graph structure, where the nodes implement
the forward() / backward().

- forward: compute result of an operation and save any intermediates
needed for gradient computation in memory

- backward: apply the chain rule to compute the gradient of the loss
function with respect to the inputs.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 64

Neural Network so far:

(Before) Linear score function:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 65

(Before) Linear score function:

(Now) 2-layer Neural Network

Neural Network so far:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 66

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

Neural Network so far:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Neural Network so far:

67

(Before) Linear score function:

(Now) 2-layer Neural Network

x hW1 sW2

3072 100 10

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 68

(Before) Linear score function:

(Now) 2-layer Neural Network
 or 3-layer Neural Network

Neural Network so far:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 69

Full implementation of training a 2-layer Neural Network needs ~11 lines:

from @iamtrask, http://iamtrask.github.io/2015/07/12/basic-python-network/

Forward pass

Backward
 pass

backprop
of derivative

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 70

Assignment: Writing 2layer Net
Stage your forward/backward computation!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 71

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 72

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 73

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 74

sigmoid activation
function

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 75

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 76

Be very careful with your Brain analogies:

Biological Neurons:
- Many different types
- Dendrites can perform complex non-

linear computations
- Synapses are not a single weight but

a complex non-linear dynamical
system

- Rate code may not be adequate

[Dendritic Computation. London and Hausser]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 77

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 78

Neural Networks: Architectures

“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 79

Example Feed-forward computation of a Neural Network

We can efficiently evaluate an entire layer of neurons.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 80

Example Feed-forward computation of a Neural Network

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 81

Setting the number of layers and their sizes

more neurons = more capacity

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 82

(you can play with this demo over at ConvNetJS: http://cs.stanford.edu/people/
karpathy/convnetjs/demo/classify2d.html)

Do not use size of neural network as a regularizer. Use stronger regularization instead:

http://cs.stanford.edu/people/karpathy/convnetjs/demo/classify2d.html

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 83

Summary

- we arrange neurons into fully-connected layers
- the abstraction of a layer has the nice property that it

allows us to use efficient vectorized code (e.g. matrix
multiplies)

- neural networks are not really neural
- neural networks: bigger = better (but might have to

regularize more strongly)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 84

Next Lecture:

More than you ever wanted to know
about Neural Networks and how to
train them.

