
* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 1

Lecture 5: 
Training Neural Networks, 

Part I 

Thursday February 2, 2017



comp150dl

Announcements!

- HW1 due today! 

- Because of website typo, will accept homework 1 until 
Saturday with no late penalty.  

- HW2 comes out tomorrow. It is very large. 

2
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Python/Numpy of the Day 

- numpy.random.uniform(low,high)
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while solver.best_val_acc < 0.50:
    weight_scale = np.random.uniform(1e-5,1e-1)
    learning_rate = np.random.uniform(1e-8,1e-1)
    model = FullyConnectedNet([100, 100],
                  weight_scale=weight_scale, dtype=np.float64)
    solver = Solver(model, data,
                    num_epochs=<small number>…
             )
    solver.train()
    print ‘Best val_acc = {} : lr was {} ws was {}’.format(solver.best_val_acc
                                                           learning_rate,
                                                           weight_scale)
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The effects of step size (or “learning rate”)

Regularization effect can be observed this way also. 

very high reg too
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Things you should know for your Project Proposal

“ConvNets need a lot 
of data to train”
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Things you should know for your Project Proposal

“ConvNets need a lot 
of data to train”

finetuning! we rarely ever  
train ConvNets from scratch.
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ImageNet data

1. Train on ImageNet 2. Finetune network on 
your own data

your 
data
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Transfer Learning with CNNs

1. Train on  
ImageNet

2. If small dataset: fix 
all weights (treat CNN 
as fixed feature 
extractor), retrain only 
the classifier 

i.e. swap the Softmax 
layer at the end

3. If you have medium 
sized dataset, “finetune” 
instead: use the old weights 
as initialization, train the full 
network or only some of the 
higher layers 

retrain bigger portion of the 
network, or even all of it.
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E.g. Caffe Model Zoo: Lots of pretrained ConvNets 
https://github.com/BVLC/caffe/wiki/Model-Zoo

...
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Things you should know for your Project Proposal

“We have infinite 
compute available  
on AWS GPU 
machines.”
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Things you should know for your Project Proposal

“We have infinite 
compute available  
on AWS GPU 
machines.” You have finite compute.  

Don’t be overly ambitious.
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Mini-batch SGD
Loop: 
1. Sample a batch of data 
2. Forward prop it through the graph, get loss 
3. Backprop to calculate the gradients 
4. Update the parameters using the gradient

Where we are now...
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(image credits  
to Alec Radford)

Where we are now...
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Convolutional Network 
(AlexNet)

input image 
weights

loss
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f

activations

gradients

“local gradient”
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Implementation:   forward/backward API

Graph (or Net) object. (Rough psuedo code)
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Implementation:   forward/backward API

(x,y,z are scalars)

*

x

y

z
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Example: Torch Layers

=
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Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network 
       or 3-layer Neural Network
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Neural Networks: Architectures

“Fully-connected” layers
“2-layer Neural Net”, or 
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or 
“2-hidden-layer Neural Net”
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Training Neural Networks 

A bit of history...
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A bit of history 

Frank Rosenblatt, ~1957: Perceptron 

The Mark I Perceptron machine was the first 
implementation of the perceptron algorithm.  

The machine was connected to a camera that used 
20×20 cadmium sulfide photocells to produce a 400-
pixel image.  

recognized  
letters of the alphabet 

update rule:
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A bit of history 

Widrow and Hoff, ~1960: Adaline/Madaline 
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A bit of history 

Rumelhart et al. 1986: First time back-propagation became popular 

recognizable maths
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Yann and his friends: CNNs in 1993 
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https://youtu.be/FwFduRA_L6Q
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A bit of history 

[Hinton and Salakhutdinov 2006] 

Reinvigorated research in 
Deep Learning
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Ian Goodfellow on Autoencoders

28

“Autoencoders are useful for some things, but turned out not to be nearly as 
necessary as we once thought. Around 10 years ago, we thought that deep nets 
would not learn correctly if trained with only backprop of the supervised cost. We 
thought that deep nets would also need an unsupervised cost, like the 
autoencoder cost, to regularize them. When Google Brain built their first very large 
neural network to recognize objects in images, it was an autoencoder (and it didn’t 
work very well at recognizing objects compared to later approaches). Today, we 
know we are able to recognize images just by using backprop on the supervised 
cost as long as there is enough labeled data. There are other tasks where we do 
still use autoencoders, but they’re not the fundamental solution to training deep 
nets that people once thought they were going to be.”
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First strong results

Context-Dependent Pre-trained Deep Neural Networks  
for Large Vocabulary Speech Recognition 
George Dahl, Dong Yu, Li Deng, Alex Acero, 2010 

Imagenet classification with deep convolutional  
neural networks 
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012 
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Overview 
1. Model Architecture: One time setup 

activation functions, preprocessing, weight 
initialization, regularization, gradient checking 

1. Training dynamics 
 babysitting the learning process,  

parameter updates, hyperparameter optimization 
1. Evaluation 
 model ensembles
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Activation Functions
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Activation Functions
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Activation Functions

Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU 
max(0.1x, x)

Maxout

ELU
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1] 
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1] 
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron 

3 problems:

1. Saturated neurons “kill” the 
gradients
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sigmoid  
gate

x

What happens when x = -10? 
What happens when x = 0? 
What happens when x = 10?
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1] 
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron 

3 problems:

1. Saturated neurons “kill” the 
gradients 

2. Sigmoid outputs are not zero-
centered
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Consider what happens when the input to a neuron (x)  
is always positive:

What can we say about the gradients on w?
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Consider what happens when the input to a neuron is 
always positive...

What can we say about the gradients on w? 
Always all positive or all negative :( 
(this is also why you want zero-mean data!)

hypothetical 
optimal w 
vector

zig zag path

allowed 
gradient 
update 
directions

allowed 
gradient 
update 
directions
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Activation Functions

Sigmoid

- Squashes numbers to range [0,1] 
- Historically popular since they 

have nice interpretation as a 
saturating “firing rate” of a neuron 

3 problems:

1. Saturated neurons “kill” the 
gradients 

2. Sigmoid outputs are not zero-
centered 

3. exp() is a bit compute expensive
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Activation Functions

tanh(x)

- Squashes numbers to range [-1,1] 
- zero centered (nice) 
- still kills gradients when saturated :(

[LeCun et al., 1991]



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 42

Activation Functions - Computes f(x) = max(0,x) 

- Does not saturate (in +region) 
- Very computationally efficient 
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x)

ReLU 
(Rectified Linear Unit)

[Krizhevsky et al., 2012]
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Activation Functions

ReLU 
(Rectified Linear Unit)

- Computes f(x) = max(0,x) 

- Does not saturate (in +region) 
- Very computationally efficient 
- Converges much faster than 

sigmoid/tanh in practice (e.g. 6x) 

- Not zero-centered output 
- An annoyance: 

hint: what is the gradient when x < 0?
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ReLU  
gate

x

What happens when x = -10? 
What happens when x = 0? 
What happens when x = 10?
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DATA CLOUD
active ReLU

dead ReLU 
will never activate  
=> never update
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DATA CLOUD
active ReLU

dead ReLU 
will never activate  
=> never update

=> people like to initialize 
ReLU neurons with slightly 
positive biases (e.g. 0.01)
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Activation Functions

Leaky ReLU

- Does not saturate 
- Computationally efficient 
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x) 
- will not “die”.

[Mass et al., 2013] 
[He et al., 2015]
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Activation Functions

Leaky ReLU

- Does not saturate 
- Computationally efficient 
- Converges much faster than 

sigmoid/tanh in practice! (e.g. 6x) 
- will not “die”.

Parametric Rectifier (PReLU)

backprop into alpha 
(parameter)

[Mass et al., 2013] 
[He et al., 2015]



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 49

Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU 
- Does not die 
- Closer to zero mean outputs 

- Computation requires exp()

[Clevert et al., 2015]
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Maxout “Neuron” 
- Does not have the basic form of dot product -> 

nonlinearity 
- Generalizes ReLU and Leaky ReLU  
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]
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TLDR: In practice:

- Use ReLU. Be careful with your learning rates 
- Try out Leaky ReLU / Maxout / ELU 
- Try out tanh but don’t expect much 
- Don’t use sigmoid
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Data Preprocessing
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Step 1: Preprocess the data 

(Assume X [NxD] is data matrix, 
each example in a row)
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Step 1: Preprocess the data 
In practice, you may also see PCA and Whitening of the data

(data has diagonal 
covariance matrix)

(covariance matrix is the 
identity matrix)
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TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet) 
 (mean image = [32,32,3] array) 
- Subtract per-channel mean (e.g. VGGNet) 
 (mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize 
variance, to do PCA or 
whitening
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Weight Initialization
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- Q: what happens when W=0 init is used?
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- First idea: Small random numbers  
(gaussian with zero mean and 1e-2 standard deviation)
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- First idea: Small random numbers  
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to 
non-homogeneous distributions of activations 
across the layers of a network.
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Lets look at 
some 
activation 
statistics

E.g. 10-layer net with 
500 neurons on each 
layer, using tanh non-
linearities, and 
initializing as 
described in last slide.
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All activations 
become zero! 

Q: think about the 
backward pass. 
What do the 
gradients look like?

Hint: think about backward 
pass for a W*X gate.
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Almost all neurons 
completely 
saturated, either -1 
and 1. Gradients 
will be all zero.

*1.0 instead of *0.01
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“Xavier initialization” 
[Glorot et al., 2010] 

Reasonable initialization. 
(Mathematical derivation 
assumes linear activations)
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but when using the ReLU 
nonlinearity it breaks.
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He et al., 2015 
(note additional /2)
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He et al., 2015 
(note additional /2)
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Proper initialization is an active area of research… 
Understanding the difficulty of training deep feedforward neural networks 
by Glorot and Bengio, 2010 

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by 
Saxe et al, 2013 

Random walk initialization for training very deep feedforward networks by Sussillo and 
Abbott, 2014 

Delving deep into rectifiers: Surpassing human-level performance on ImageNet 
classification by He et al., 2015 

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015 

All you need is a good init, Mishkin and Matas, 2015 
…
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Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer. 
To make each dimension unit gaussian, apply:

this is a vanilla 
differentiable function...
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Batch Normalization
“you want unit gaussian activations?  
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and 
variance independently for each 
dimension.

2. Normalize
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Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully 
Connected / (or Convolutional, as 
we’ll see soon) layers, and before 
nonlinearity.
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash  
the range if it wants to:

Note, the network can learn:

to recover the identity 
mapping.

Normalize:
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Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through 
the network 

- Allows higher learning rates 
- Reduces the strong dependence 

on initialization 
- Acts as a form of regularization 

in a funny way, and slightly 
reduces the need for dropout, 
maybe
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Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer 
functions differently: 

The mean/std are not computed 
based on the batch. Instead, a single 
fixed empirical mean of activations 
during training is used. 

(e.g. can be estimated during training 
with running averages)
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Babysitting the Learning Process
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Step 1: Preprocess the data 

(Assume X [NxD] is data matrix, 
each example in a row)
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Step 2: Choose the architecture: 
say we start with one hidden layer of 50 neurons:

input 
layer hidden layer

output layer
CIFAR-10 
images, 3072 
numbers

10 output 
neurons, one 
per class

50 hidden 
neurons
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Double check that the loss is reasonable: 

returns the loss and the 
gradient for all parameters

disable regularization

loss ~2.3. 
“correct “ for  
10 classes
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Double check that the loss is reasonable: 

crank up regularization

loss went up, good. (sanity check)
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Lets try to train now…   

Tip: Make sure that 
you can overfit very 
small portion of the 
training data The above code: 

- take the first 20 examples from 
CIFAR-10 

- turn off regularization (reg = 0.0) 
- use simple vanilla ‘sgd’
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Lets try to train now…   

Tip: Make sure that 
you can overfit very 
small portion of the 
training data

Very small loss,  
train accuracy 1.00,  
nice!
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Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down.
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Let’s try to train now…   

Start with small 
regularization and find 
learning rate that 
makes the loss go 
down.

Loss barely changing 
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Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down. 

loss not going down: 
learning rate too low 

Loss barely changing: Learning rate is 
probably too low
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Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down. 

loss not going down: 
learning rate too low 

Loss barely changing: Learning rate is 
probably too low 

Notice train/val accuracy goes to 20% 
though, what’s up with that? (remember 
this is softmax) 
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Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down. 

loss not going down: 
learning rate too low

Okay now lets try learning rate 1e6. What could 
possibly go wrong?
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cost: NaN almost 
always means high 
learning rate...

Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down. 

loss not going down: 
learning rate too low 
loss exploding: 
learning rate too high
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Lets try to train now…   

I like to start with small 
regularization and find 
learning rate that 
makes the loss go 
down. 

loss not going down: 
learning rate too low 
loss exploding: 
learning rate too high

3e-3 is still too high. Cost explodes…. 

=> Rough range for learning rate we 
should be cross-validating is 
somewhere [1e-3 … 1e-5] 
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Hyperparameter Optimization
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Cross-validation strategy 
Try coarse to fine cross-validation in stages 

First stage: only a few epochs to get rough idea of what params work 
Second stage: longer running time, finer search 
… (repeat as necessary)

Tip for detecting explosions in the solver:  
If the cost is ever > 3 * original cost, break out early



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 91

For example: run coarse search  for 5 epochs

nice

note it’s best to optimize 
in log space!
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Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons. 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 93

Now run finer search...
adjust range

53% - relatively good 
for a 2-layer neural net 
with 50 hidden neurons. 

But this best cross-
validation result is 
worrying. Why?
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Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization 
Bergstra and Bengio, 2012
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Hyperparameters to play with: 
- network architecture 
- learning rate, its decay schedule, update type 
- regularization (L2/Dropout strength)

neural networks  
practitioner 

- lots of 
connections to 
make 

- lots of knobs to 
turn 

- want to get the 
best test 
performance
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Andrej Karpathy’s  
cross-validation 
“command center”



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 97

Monitor and visualize the loss curve
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Loss

time
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Loss

time

Bad initialization 
a prime suspect
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lossfunctions.tumblr.com Loss function specimen

validation loss “This RNN smoothly forgets 
everything it has learned.”

LR step function
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Monitor and visualize the accuracy:

big gap = overfitting 
=> increase regularization strength? 

no gap 
=> increase model capacity?
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Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay) 
want this to be somewhere around 0.001 or so



comp150dl

How Weights Change
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Parameters p:  
no learning Parameters p’:  

lots of learning

Parameters p:  
learning rate or  
regularization are too  
big and some weights are 
exploding. 
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Summary 
We looked in detail at: 

- Activation Functions (use ReLU) 
- Data Preprocessing (images: subtract mean) 
- Weight Initialization (use Xavier init) 
- Batch Normalization (use) 
- Babysitting the Learning process 
- Hyperparameter Optimization 
 (random sample hyperparams, in log space when 
appropriate)

TLDRs
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Next 
Look at: 

- Parameter update schemes 
- Learning rate schedules 
- Gradient Checking 
- Regularization (Dropout etc) 
- Evaluation (Ensembles etc)


