Lecture 5:
Training Neural Networks,
Part |

Thursday February 2, 2017

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d C."Iilfts

Announcements!

- HW1 due today!

- Because of website typo, will accept homework 1 until
Saturday with no late penalty.

- HW2 comes out tomorrow. It is very large.

compisodl £3Tufts

Python/Numpy of the Day
— numpy.random.uniform(low, high)

while solver.best val acc < 0.50:
weight scale = np.random.uniform(le-5,1le-1)
learning rate = np.random.uniform(le-8,1le-1)
model = FullyConnectedNet([100, 1007,

weight scale=weight scale, dtype=np.floaté64)
solver = Solver(model, data,

num epochs=<small number>..

)

solver.train()

print ‘Best val acc = {} : 1lr was {} ws was {}’'.format(solver.best val acc
learning rate,
weight scale)

.........

Loss

The effects of step size (or “learning rate”)
A

loss

low learning rate

high learning rate

good learning rate

& &0 0 100
tpach 4

epoch

Regularization eftect can be observed this way also.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'I‘ufts 4

Things you should know for your Project Proposal

“ConvNets need a lot
of data to train”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts

Things you should know for your Project Proposal

“ConvNets need a lot "{/@'\
of data to train” \V

finetuning! we rarely ever
train ConvNets from scratch.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @Tufts

1. Train on ImageNet 2. Finetune network on
\ your own data

ImageNet data

h

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (.Q'I‘Ufts

Transfer Learning with CNNs

image
conv-64

conv-64
maxpool

conv-128
conv-128

maxpool

conv-256
conv-256

maxpool

conwv-512
conv-512

maxpool

conv-512
conv-512

1. Train on
ImageNet

FC-4096
FC-409%6
FC-1000

image

conv-64

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

comp150dI ﬁl‘ufts

conv-256

3. If you have medium
sized dataset, “finetune”
instead: use the old weights
as initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

conv-512

conv-512
conv-512

FC-40%6
FC-40%6
FC-1000

.

E.g. Caffe Model Zoo: Lots of pretrained ConvNets

https://github.com/BVLC/caffe/wiki/Model-Zoo

[—— NN Bty Vor Rabovdt Oges b Bt g v Mewnad age
Mol Zoo
- o - - . —
ph——————— o B L T Ty s—
- g S P g et P gt
Narbea) drurad —ode s (e Loarsung of By Maan Codes for § ail Wnage
Pavaiw
Nt mesh o el s bt oty Comrettint Somartn Sogmactsten Watsn #CO = e
.
VG Tace (N sanr g
o LT L I N e el .
Models rom the BMVC-2914 paper "t of the Davil in the Mordeis As Age oms Ceorvmms Clans As anmn
@t Prase (romrg

Owtass Detving Deey wbs Corrvonlamal Moty ©

Moduis wasd by Ba VOO lnam n L IVRC 2004

| Karfoe

Googh efet e 0o Cor madel Cham g snon

YT TOT OO OO oo v TToTTT TOoT

and Li Fei-Fei, Stanford cs231n

B comp150dT g TUITS

Things you should know for your Project Proposal

“We have infinite
compute available

on AWS GPU
machines.”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d C‘.;'I‘u'fts

10

Things you should know for your Project Proposal

“We have infinite /‘\\

compute available W

on AWS GPU

machines.” You have finite compute.
Don’t be overly ambitious.

* Original slides borrowed from Andrej Karpathy 11
and Li Fei-Fei, Stanford cs231n comp150al @Tufts

Where we are now...

Mini-batch SGD

Loop:

1. Sample a batch of data

2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients

4. Update the parameters using the gradient

* Original slides borrowed from Andrej Karpathy h
and Li Fei-Fei, Stanford cs231n comp150d t_Vrn‘lfts

12

VWhere we are now...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

....
............

......

N I

S — sGD L
—— Momentum £

= NAG
~ Adagrad

Adadelta
Rmsprop

13

Convolutional Network
(AlexNet)

iInput image g
weights 4

 »

loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d 8Tufts

14

activations

“local gradient”

AR
<
OL
Y = 0z
oL .
gradients

al slides borrowed from Andrej Karpathy
ei-Fei, Stanford cs231n comp150d| @mfts

Implementation:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

forward/backward API

Graph (or Net) object. (Rough psuedo code)

(object):

forward(inputs):

r gate self.graph.nodes topologically sorted():
gate.forward()
loss # the final gate in the graph outputs the loss

rd():

gate

reversed(self.graph.nodes topologically sorted()

gate.backward() # lit rop (chain rule

tle piece of backp

inputs gradients

comp150dl! (_Q'I'ufts

applie

Implementation: forward/backward API

yGate(object):
lef forward(x,y):
)(Z = X*y
\ p self.x = x # must keep these around!
> self.y =y
Z

y jef backward(dz):

dx = self.y * dz # [dz/dx * dL/dz)
dy = self.x * dz # [dz/dy * dL/dz]

rn [dx, dy]

(X,y,z are scalars)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'I\Ifts

18

Neural Network: without the brain stuff

(Before) Linear score function: f = Wz

(Now) 2-layer Neural Network f = Wy max(O, chc)
or 3-layer Neural Network

f = W3 max(0, W2 max(0, Wiz))

* Original slides borrowed from Andrej Karpathy 1
and Li Fei-Fei, Stanford cs231n comp150d| C:yIilfts 9

impulses carried
toward cell body

branches
of axon

terminals

impulses carried

away from cell body wo

*® synapse
axon from a neuron ™
\ WoZo

dendrite \

cell body

f (Z w;z; + b)

output axon

activation
function

w1

class Neuron:
AN
def neuron_tick(inputs):
“** assume inputs and weights are 1-D numpy arrays and bias is a number
cell body sum = np.sum(inputs * sclf.weights) + scl’.bias
firing rate = 1.0 / (1.0 + math.exp(-cell _body sum)) # sigmoid activation function
return firing rate

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl em 20

Neural Networks: Architectures

output layer
input layer
hidden layer

W

“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'rufts

NN\

2\
A‘

g‘z’:‘:’\ &
[=

\ output layer
input layer

hidden layer 1 hidden layer 2

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

“Fully-connected” layers

21

Training Neural Networks

A bit of history...

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d ‘-VTufts

A bit of history

The Mark | Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20x20 cadmium sulfide photocells to produce a 400-

pixel image.

1
recognized flz) = {0
letters of the alphabet

update rule:
wi(t + 1) = w;(t) + a(d; - yj(t.))rj‘,-.

fw-z+b>0

otherwise

Frank Rosenblatt, ~1957: Perceptron

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'Ihfts

23

A bit of history

+1

Quantizer
+|

Input
lmol<

—'*—000!90'

Q's ore odjustoble

Widrow and Hoff, ~1960: Adaline/Madaline

* Original slides borrowed from Andrej Karpathy oY
and Li Fei-Fei, Stanford cs231n comp150d c.'mfts

A bit of history

Internal
Representation
Umits

Input Patterns

To b more speciic. shen, br

l,--%zu‘, - o) @
!

be cor mecsare of e ervor on Inper] paper porens P cdh[-zf, N car
overall meczere of he error. We with % thow thar the Jely e Implomenss ¢ poo-
Sont desoont in £ when e wnis oot Bntie. We will procend By simply showing
e

-a-.:.-a""l
which i proportigaal 20 &, %, ot prevcrided By e Sl nile. W thive v o
Adion wal) £ 0 3meghireand m compuy e lavar: My For s parpone
w s She chain rale 0 weie she derivasivn @1 e prodt of ved pany he S
Sur of e ervor wih respect % e uper of The wnl Simes the derivative of e out-
P WA ASpert 9 e weiphe

3, _ 36 o 2

aw, 99, aw,
The firsz pare sy Bow she orvpe Ohanges with e topet of e J i st ond the

Scond part sl Ao mwch thanping W, changes et cugper. Now, the dertuators
o iy W cvmgpane Forw, oo Epuavion)

dF, w
ﬁ——(x,,—o.)-—a,,.
Nt surgrisingly, e contrduson of wnt U, i S evror [siwply proporsionsl m 8,
Morvow? Moy e Wi Loes’ wnn
LD XN o

Jrom which wr conclede ther
3o,

——-"’

dw,

Thea. substinnting Bock tnto Egucton 1, we are sher

[13
--6—.':--6.(W

“—

recognizable maths

Rumelhart et al. 1986: First time back-propagation became popular

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'Ihfts

25

Yann and his friends: CNNs in 1993

https://youtu.be/FWFduRA L6Q

comp150d| f_’}'l\]fts

26

A bit of history o

[Hinton and Salakhutdinov 2006] [W,

..

..

Reinvigorated research in =

Deep Learning] — st |
)
|)
RBM :
Unrolling Fine-tuning
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts 21

lan Goodfellow on Autoencoders

“Autoencoders are useftul for some things, but turned out not to be nearly as
necessary as we once thought. Around 10 years ago, we thought that deep nets
would not learn correctly if trained with only backprop of the supervised cost. We
thought that deep nets would also need an unsupervised cost, like the
autoencoder cost, to reqularize them. When Google Brain built their first very large
neural network to recognize objects in images, it was an autoencoder (and it didn't
work very well at recognizing objects compared to later approaches). Today, we
know we are able to recognize images just by using backprop on the supervised
cost as long as there is enough labeled data. There are other tasks where we do
still use autoencoders, but they’re not the fundamental solution to training deep
nets that people once thought they were going to be.”

comp150dI (‘::'I’ufts

28

First strong results

Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2010

Imagenet classification with deep convolutional

neural networks ' s “.‘. L- l " Tﬁ, ‘DM.....

Alex Krizhevsky, llya Sutskever, Geoffrey E Hinton, 2012

—

:'. . ‘ ! » \

'.‘;._:‘ ™ ™ gense
4& i
w]

pockng
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gllhfts 29

Overview

1. Model Architecture: One time setup
activation functions, preprocessing, weight
initialization, reqularization, gradient checking
1. Training dynamics
babysitting the learning process,
parameter updates, hyperparameter optimization
1. Evaluation
model ensembles

* Original slides borrowed from Andrej Karpathy h
and Li Fei-Fei, Stanford cs231n comp150d ¢_VTufts

30

Activation Functions

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d c_"mfts

31

Activation Functions

Z(wo

*@® synapse
axon from a neuron
wo(

cell body

f (Zw,-m,- +b)
Zw,-:n,- +b '

>
output axon

i

activation

W Ty function

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts

32

: : : Leaky RelLU
Activation Functions max(0.1x, x)

Sigmoid
olz)=1/(14+e7") __/

Maxout max(w'f‘;r 1 bl,wg‘:z: - by)

tanh tanh(X) ELU f(z) = {r) |lr n

HE

ReLU max(0,x)

* Original slides borrowed from Andrej Karpathy 33
and Li Fei-Fei, Stanford cs231n comp150d (_}Mts

Activation Functions o(z) =1/(1+¢e7%)

- Squashes numbers to range [0,1]

- Historically popular since they
have nice interpretation as a
osf saturating “firing rate” of a neuron
0 ,;.
Sigmoid
and Ui Fei-Fei, Stanfora cezain T compisodl €3 Tufts

34

Activation Functions o(z)=1/(1+e7%)

- Squashes numbers to range [0,1]
- Historically popular since they
have nice interpretation as a

o/ saturating “firing rate” of a neuron

3 problems:

i TSRS W et N T S Smr— =,

- 10 -5 5

1. Saturated neurons “kill” the
Sigmoid gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts

35

do
ox

gmoid

ate

X
<
OL 0o 0L
Or Oz Oo

o(z)=1/(1+e7%)

>

<

%
Oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

comp150dI (_}'I‘ufts

AAAAA

PR
10

36

Activation Functions o(z)=1/(1+e€7")

- Squashes numbers to range [0,1]

o o - Historically popular since they
have nice interpretation as a

osf/ saturating “firing rate” of a neuron
0 .;

3 problems:

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n comp150d (.Qll,ufts

Consider what happens when the input to a neuron (x)

IS always positive:

Lo wo
O
axon from a neuron ki
WoTo

output axon

f szwz +b

activation
function

What can we say about the gradients on w?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| f_Q'I'ufts

38

Consider what happens when the input to a neuron is

always positive... o
gradient
update
directions
I .
f E wz CEz + b allowed 2ig zag path
gradient
2 update
directions 07
hypothetical
What can we say about the gradients on w? optI{nal w
veclor

Always all positive or all negative :(
(this is also why you want zero-mean data!)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (‘_ETUftS 39

Activation Functions o(z)=1/(1+e€7")

- Squashes numbers to range [0,1]

o i - Historically popular since they

os} have nice interpretation as a

oa/ saturating “firing rate” of a neuron
3 problems:

1. Saturated neurons “kill” the
Sigmoid gradients
2. Sigmoid outputs are not zero-
centered
3. exp() is a bit compute expensive

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (.Q'I‘Ufts

Activation Functions

10F s

- Squashes numbers to range [-1,1]
' - zero centered (nice)
- still kills gradients when saturated :(

- 10 -5 ‘ 5 10

tanh(x)

[LeCun et al., 1991]

* Original slides borrowed from Andrej Karpathy 41
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts

Activation Functions Computes f(x) = max(0,x)

- Does not saturate (in +region)
/ - Very computationally efficient

/ - Converges much faster than

v/ sigmoid/tanh in practice (e.g. 6x)

L A 1 1
10 5 5 10

RelLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts 42

Activation Functions Computes f(x) = max(0,x)

- Does not saturate (in +region)

of - Very computationally efficient
of - Converges much faster than
/ sigmoid/tanh in practice (e.g. 6x)
T : T - Not zero-centered output
- An annoyance:
RelLU
(Rectified Linear Unit) hint: what is the gradient when x < 0?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp1sodl €9 Tufts 43

X
<
OL 0o 0L
Or Oz Oo

do
ox

eLU

ate

o(z) = max(0, z)

OL
Oo

What happens when x = -107?
What happens when x = 07
What happens when x = 107?

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

comp150dI (__Q'Ihfts

44

active RelLU
> DATA(CLOUD

dead RelLLU
will never activate
=> never update

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @Tufts

i,
active RelLU
> DATA(CLOUD

A

=> people like to initialize
ReLU neurons with slightly dead RelLU
positive biases (e.g. 0.01) will never activate

=> never update

* Original slides borrowed from Andrej Karpathy 46
and Li Fei-Fei, Stanford cs231n comp150d C‘.;'I‘u'fts

Activation Functions

Leaky ReLU
f(z) = max(0.01z, z)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

[Mass et al., 2013]
[He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

comp150d| @'I‘ufts 47

Activation Functions

Leaky ReLU
f(z) = max(0.01z, z)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

[Mass et al., 2013]
[He et al., 2015]
- Does not saturate
- Computationally efficient
- Converges much faster than
sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)
f(z) = max(az, x)

v

backprop into alpha
(parameter)

comp150d| G'Ihfts 48

Activation Functions [Clevert et al., 2015]

Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

T ifx >0
Piw) = {(.l’ (exp(z)—1) ifz<0

* Original slides borrowed from Andrej Karpathy 49
and Li Fei-Fei, Stanford cs231n comp150d Gmfts

Maxout “Neuron” [Goodfellow et al., 2013]

- Does not have the basic form of dot product ->
nonlinearity

- Generalizes RelLU and Leaky RelLU
- Linear Regime! Does not saturate! Does not die!
max(w! z + by, wl z + by)

Problem: doubles the number of parameters/neuron :(

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| C‘_;'I‘u-fts 50

TLDR: In practice:

- Use RelLU. Be careful with your learning rates
- Try out Leaky RelLU / Maxout / ELU

- Try out tanh but don’t expect much

- Don’t use sigmoid

iginal slides borrowed from Andrej Karpathy
L comp150dl! (_@'I‘ufts

*Or
and Li Fei-Fei, Stanford cs231n

51

Data Preprocessing

* Original slides borrowed from Andrej Karpathy N
and Li Fei-Fei, Stanford cs231n comp150d {‘.'mfts

52

Step 1: Preprocess the data

original data zero-centered data normalized data
|
0 — e / I
'l .‘. "
| Y

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @m

Step 1: Preprocess the data

In practice, you may also see PCA and Whitening of the data

original data decorrelated data whitened data

(data has diagonal (covariance matrix is the
covariance matrix) identity matrix)

* Original slides borrowed from Andrej Karpathy :
and Li Fei-Fei, Stanford cs231n comp1sod! €9 Tufts

54

TLDR: In practice for Images: center only

e.g. consider CIFAR-10 example with [32,32,3] images

- Subtract the mean image
(mean image = [32,32,3] array)
- Subtract per-channel mean
(mean along each channel = 3 numbers)

Not common to normalize
variance, to do PCA or
whitening

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| C:yIilfts 55

Weight Initialization

* Original slides borrowed from Andrej Karpathy N
and Li Fei-Fei, Stanford cs231n comp150d {‘.'mfts

56

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts

Q: what happens when W=0 init is used?

output layer
input layer
hidden layer

57

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d f_’#'nlfts

58

- Firstidea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

W= 0.01* np.random.randn(D,H)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_Q'I‘ufts

59

#F aAss5une SO0aM init gaussian 10-0 input data

D = np.random.randn(1000, 500)
hidden layer sizes = [500]*10

LetS IOOk at monlinearities = ['tanh’')*len(hidden layer sizes)
Hs = {}
SO' I le for 1 in xrange(len(hidden layer sizes)):
X=Dif § == 0 else Hs[1-1] # input at this layer

s= i1ng

fan in = X.shape([1]

act = {'relu’:lambda x:np.maximum(®,x), 'tanh’':lasbda x:np.tanh(x)}

- - fan out = hidden layer sizes[i]
aC Iva Ion W = np.random.randn(fan in, fan out) * 06.81 # layer initialization

. . H = np.doti{X, W) # matrix sultiply
M= octlnonlmearxuesllll(m # nonlinearity
StatistiCs Hs[4) = W # cache result on this Layer
» '|\‘ lr ".\" D 4 S vAL’ Cd h :‘p"'

print 'input layer ha-‘ sean 5f and std 5f' % (np.mean(D),
layer seans = [np.msean(H) for 1i,H in Hs.iteritems()]
layer stds = [np.std(H) for i,H im Hs.iteritems())

for L.H in Hs. iteritems():

E.g. 10-layer net with | 17 o i sevaniens
plt.subplot(121)

500 neurons on each pLE Lot (s keys (), Layer_means, “cb-")
layer, using tanh non- | 23wl oo, wyer seos, or)
|InearItIeS and plt.title(' layer std')
initializing as T
described in last slide. e e

plt.hist(H.ravel(), 38, range=(-1,1))

print ‘hidden layer %d had mean Af and std Nf' N (i+1,

np.std(D))

layer means(1], layer stds{i))

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| G}'I‘ufts

60

ingut layer had mean 0.000927 and std 0.998388
hidden layer 1 had mean -9.000117 and std 0.213081
hidden Layer 2 had mean -0.000001 and std 0.04755)
hidden layer 3 had mean -9.008882 and std ©.810638
hidden layer 4 had mean 0.000001 and std 0.902378
hidden layer 5 had mean 9.000092 and std 0.900532
hidden layer 6 had mean -0.000000 and std 0.000119
hidden layer 7 had mean ©.000000 and std 0.50002¢
hidden Llayer & had mean -0.000000 and std 0.000006
hidden layer 9 had mean 5.600698 and std ©.580001
hidden layer 19 had mean -0,.000000 and std 9.000000
3 oecy A Loy 2Y
. —y - — - - -
w ?
- 2
o <
O s D -
()]
S =
o = e
c (@]
(w'.v. . E
—. “ 3
s ——
- i ') ' . ' ') ‘ .
- Epoch Epoch
2
< » ~ »
2
o
§ » » S I Py o
Y
(o]
e : » e
©
—_
o s 2 s B = e
L
% who b 2 L3 B L B

Epoch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dl| 9

23298 32 24 B0

61

ingut layer had msean 0.000927 and std 0.998388
hidden layer 1 had sean -9.000117 and std 0.213081
hidden Layer 2 had nean -0.000001 and std 0.04755]
hidden layer 3 had mean -9.000882 and std 6.810638
hidden layer 4 had mean 9.00000]1 and std 0.902378
hidden layer 5 had mean 9.000092 and std 0.990532
hidden layer 6 had sean <0.000000 and std 0.000119
hicdden layer 7 had mecan 9.000000 and std 0.900026
hidden Llayer 8 had mean -0.000000 and std 0.000006
hidden layer 9 had mean 9.000000 and std ©.580001
hidden layer 19 had mean -0.000000 and std 9.000000

Mean of Weights

Std of Weights

.

~

Histogram of Weights .

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

comp150d| @'I‘ufts

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

62

Mean of Weights

Histogram of Weights

W = np.random.randn(fan in, fan out) * 1.0 # layer initialization

Snput layer had scan 0.001800 and std 1.001311

Moden Layer 1 had meon -0.000430 and std 0.98107
Bidden layer 2 Bad scan 0.000849 and 3td 0.90104
Moden Layer 3 had sean 0.000566 and std 9.981601
Bidden layer 4 bhad scan 0.00043) asd 3td 0.201733

Almost all neurons
. completely

Ridden Lover $ hed meem -4.00002 4ng 314 .981614 *1.0 instead of *0.01 .

bidden Loyer 7 Mod mesn 0.096237 4nd 14 0.881529 saturated, either -1

— . e and 1. Gradients
will be all zero.

Std of Weights

Epoch) S ~ Epoch

Epoch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts 63

ingut layer had sean 0.001800 and std 1.131)

hidden layer 1 had sean 0.001198 and std 9.62793)
hidden Layer
hidden layer

hid

dan Layer

hidden layer
hidden Layer
hidden layer
hidden layer
hidden layer

hid

Mean of Weights

Histogram of Weights

den Layer

* Original slides borrowed from Andrej Karpathy

2 had

3
4
5
6
U
9
10

e |

had
had
had
had
had
had
had

pean -0. 000175 and STA 0.48605]
pean 6.008635 and std 9.487723
pean 0. 0306 and st 0,357 188
nean 0.668142 and std 8.320917
pean -0. 000389 and std 0.292116
sean <0 . 000228 and std 0.27387
pean 0. 000291 and ST14 0.2549
mean 6.008361 and std 8.239266

had sean 0. 000139 and std 0.278008

and Li Fei-Fei, Stanford cs231n

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization

Std of Weights

.
“‘

| .

] ’

comp150d| f}Tufts

Epoch

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

64

input layer had mean 0.688381 and std ©.999444

hidden
hidden
hidden
hidden
hidden
hidden
hidsen
hidden
hioden
hidden

layer
layer
layer
layer
layer
layer
layer
layer
layer
layer

1 had mean 0.398623 and
2 had mean 8.272352 and
3 had mean 0.186076 and
4 had mean 9.136442 and
S had meon 0.099568 and
6 had mean 8.872234 and
7 had mean 0.049775 and
8 had mean 9.033138 and
9 had mean 0.025404 and

std 0.582273
ste 9.403795
Ste 9.276912
std 9.198683
St 0.140299
ste ©.103280
St 0.072748
std 9.051572
Std 0.03858)

W = np.random.randn(fan in, fan out) / np.sqrt(fan in) # layer initialization |

18 had mecan 6.918488 and std ©.820876

i

Mean of Weights

Std of Weights

Iyywr 4

but when using the RelLU

nonlinearity it breaks.

Histogram of Weights

| - -

L 4

Epoch

* Original slides borrowed from Andrej Karpathy

and Li Fei-Fei, Stanford cs231n

comp150d| B'Ihfts

65

Histogram of Weights

isput layer had mesn 0.000391 and std 0.939¢s¢ |W = np.random.randn(fan in, fan out) / np.sqrt(fan in/2) # layer initialization
hidden Layer 1 had sean 0.5624488 and std 0.8252%2 — — —
hidden layer 2 had sean 0.333014 and std 9.827823
hidden layer 3 had mean 0,545867 and std 0.8613855
hidden layer 4 had scan 0.3033% and std 8.820%2
hidden layer S had mean 0.547678 and std 9.834092 H t I 201 5
hidden layer & had mean 0.387183 and std 5.86803% e e a "y
hidden layer 7 had sean 0.596867 and std 9.8T06)0
hidden layer 8 had mean 6.623214 and std 5.889348 g
hidden layer 9 had sean 0.567498 and std 9.845357 t dd t I /2
hidden layer 18 had mean ©.352531 and std ©.844523 (no e a I IOna
Lo e - Y S s
o .
%)
E 4 ‘fg .
[} <
‘O . % - »
% b . ; -
o Y— .
c)
8 . - . E .
E g 2 2 - .
’ J :
: Epoch’ ' "Epoch
2ok 4 x T o4
) thofe .
. ~ 4 ~ ~ i vl ~4 -4 .~

Epoch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d BTllftS o6

np.randon.randn'(fan_in. fan out) / np.sqrt(fan_in/2) # layer initialization

He et al., 2015
(note additional /2)

input layer had mean 0.000391 and std 0.93%484 (W =

hidden layer 1 had sean 0.562488 and std 0.8252%2

hidden layer 2 had sean 0,333014 and std 9.827823

hidden layer 3 had mean 0,545867 and std 9.813855

hidden layer 4 had scan 0.3033% and std 8.820%2

hidden layer 5 had sean 0.547678 and std 0.834092

hidden layer & had mean 0.387183 and std 9.80803%

hidden layer 7 had sean 0,.596867 and std 0.876)0

hidden layer 8 had mean 6.0623214 and std 9.889348

hidden layer 9 had sean 0.567498 and std 0.845357

hidden layer 18 had mean 6.352331 and std ©.844523

Layor " » g’ 832

o .
(7]
E 2 .
()] Ny
6 a el g) - .
= 7
- . 2 s
o u
[O im
o - . =) .
é) e w - -

o8 e . :

- b v
' Epoch’ ‘ "Epoch

'y] :
.-5.’ . - y 2ol
()
; B o s | = ol +
Y
(o]
o - R E L e
o
o ». » = | 4 ok
[e]
»
-La- ~ - ~ - i o -4 - .~
T l 1

Epoch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dl| g'l\lfts

1
—Eﬂ.Vurln,l = 1 ours

wene B Var{w] = 1 Xovier

67

Proper initialization is an active area of research...

Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krahenbuhl et al., 2015

All you need is a good init, Mishkin and Matas, 2015

* Original slides borrowed from Andrej Karpathy h
and Li Fei-Fei, Stanford cs231n compisodl £3Tufts 68

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations? just make them so.”

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

~(k) l'(k) — E[L(k)]

o =
V/ Var[z(%)] this is a vanilla
differentiable function...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts

69

Batch Normalization [loffe and Szegedy, 2015]

“you want unit gaussian activations?
just make them so.”

AAA 1. compute the empirical mean and
variance independently for each
dimension.

N | X X

2. Normalize

\A A/ ~ _ &) — E[zt]
D V/ Var[z(®)]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts

Batch Normalization [loffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

~(F) _ (k) _ E[:,;(k)]
v/ Var[z(%)]

comp150d| @T‘llfts 71

Batch Normalization

Normalize:
) _ z®) — E[z®)]
v/ Var[z(*)]

And then allow the network to squash

the range if it wants to:

(k) = 5K)Z(R) 4 g(k)

Y

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| ((.Q'I’ufts

[loffe and Szegedy, 2015]

Note, the network can learn:
v*) = /Var[z(®)]
Bk) = E[:c("')]

to recover the identity
mapping.

72

Batch Normalization

Output: {y; = BN, z(x;)}

=1
1 m
2 2
gt = E (i — pus)
m 4
=1

Input: Values of x over a mini-batch: B = {x; . }:
Parameters to be learned: ~, 3

¥i — 7% + B = BN, g(z;)

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @mfts

[loffe and Szegedy, 2015]

Improves gradient flow through
the network

Allows higher learning rates
Reduces the strong dependence
on initialization

Acts as a form of regularization
in a funny way, and slightly
reduces the need for dropout,
maybe

73

Batch Normalization

Output: {y; = BN, sz(x;)}

1
2 .
og — — (z; — ug)
I -
=1
s Iy — UB
r; <

Input: Values of & over a mini-batch: B = {x; . }:
Parameters to be learned: ~,

// mini-batch mean

// mini-batch variance

// normalize

// scale and shift

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

[loffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

comp150d| {(.Q'I’ufts 74

*Or
and

igi
Li

Babysitting the Learning Process

nal slides borrowed from Andrej Karpathy N
Fei-Fei, Stanford cs231n comp150d| c." mfts

75

Step 1: Preprocess the data

original data zero-centered data normalized data
|
0 — e / I
'l .‘. "
| Y

X -= np.mean(X, axis = 0). X /= np.std(X, axis = 0)

(Assume X [NxD] is data matrix,
each example in a row)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @m

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

50 hidden

neurons
/ output layer 10 output
CIFAR-10 input n:l:g)g:é one
images, 3072 layer hidden layer P
numbers

* Original slides borrowed from Andrej Karpathy 77
and Li Fei-Fei, Stanford cs231n comp150d| c_srrufts

Double check that the loss is reasonable:

def init two layer model(input size, hidden size

, output size):

model {}
model['W1'] 0.0001 np.random.randn(input size, hidden size)
model |] np.zeros(hidden size)
model['W2'] 0.0001 np.random.randn(hidden size, output size)
model [] np.zeros(output size)

e

model

model = init_two_layer_model(32*32*3, 50, 10) # input size, hidden size, number of classes
:;?irit ?;22 = two_layer net(X train, ;odel, y train| 0.0 disable regularization
2.30261216167 ‘\ |OSS ~23

“correct “ for returns the loss and the

10 classes gradient for all parameters

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_:’Il’ufts

Double check that the loss is reasonable:

def init two layer model(input size, hidden size

, output size):

model {}
model['W1'] 0.0001 * np.random.randn(input size, hidden size)
model |] np.zeros(hidden size)
model['W2'] 0.0001 * np.random.randn(hidden size, output size)
model [] np.zeros(output size)

e

model

model = init two layer model(32*32+%3, 50, 10) # Ingut_size, hidden size, number of classes
loss, grad = two layer net(X train, model, y train/] le3 crank up regularization
print loss

3.06859716482 ‘
D loss went up, good. (sanity check)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_I}Tufts

79

Lets try to train now...

Tip: Make sure that
you can overfit very
small portion of the
training data

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init two layer model(32+32+3, %6, 18) # |

trainer = ClassifierTrainer()

X tiny = X train[:20] #» ¢

y tiny = y train[:20]

best model, stats = trainer.train(X tiny, y tiny, X tiny, y tiny,
model, two layer net,

nun epochs=200, rege=d.o,
update='sgd’, learning rate decay=l,
sanple batches = False,

lcnrnlng rate=le-3, verbose=True)

The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)

- use simple vanilla ‘sgd’

comp150d| f_Q'I'ufts

80

Lets try to train now..

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,

train accuracy 1.00,

nice!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model =

init two layer model(32%32+3, %8,

trainer = ClassifierTrainer()
X tiny = X train[:20] # take 20 examples
y tiny = y train[:20]

best model,

model, two layer net,
nun_epochs=200, reg«0.o,

update='sqgd”’,

learning rate decay=1,

stats = trainer.train(X tiny, y tiny, X tiny, y tiny,

sanple batches = False,
learning rate=le-3, verbose=True)

18) # input sire, hidden size,

number

of classes

Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished
Finished

L

epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch
epoch

—- ok

Finished
Finished
Finished

Finished

Finished
Finished
finished

200:
200:
200:
209:
200:
200:
200:
209:
209:
200:
200:
200:
200:
200:
200:
200:
200:
200:
200:

Aana .
195
196
197
198
199
200

WO NOVEWN -
TN NNNNSNSSNSSNS S

-
-

‘-~ﬁ--
CaoaNOUVwLwWN
By oy, My, ey, My, oy, ey, Ty, Ty,

— -

epoch
epoch
epoch
epoch
epoch
epoch

optimization. best validation accuracy: 1.000009

comp150dl| 9

T RE

cost 2.302603, train: 0.400000, val 0.400000, \r 1.000000e¢-03
cost 2.302258, train: 0.450000, val 0.450000, Llr 1.000000e-03
cost 2.301849, train: 0.600000, val 0.600000, Lr 1.000000e-03
cost 2.301196, train: ©.650000, val 0.650000, \r 1.000000¢-03
cost 2.300044, train: 0.650000, val 0.650000, \r 1.000000¢-03
cost 2.297864, train: 0.550000, val 0.550000, Llr 1.000000e-03
cost 2.293595, train: 0.600000, val 0.600000, Lr 1.000000e-03
cost 2.28%096, train: 0.5%0000, val 0.5%0000, lr 1.000000¢-03
cost 2,268094, train: 0,550000, val 6.550000, \r 1,000000¢-03
COsSt 2.234787, train: 0.500000, val 0.500000, lr 1.000000e-03
cost 2.173187, train: 0.500000, val 0.500000, Lr 1.000000e-03
cost 2.076862, train: ©.500000, val ©.500000, lr 1.600000e-03
cost 1.974690, train: ©.400000, val ©.400000, lr 1.000000¢-03
cost 1.895885, train: 0.400000, val 0.400000, lr 1.000000e-03
cost 1.820876, train: 0.450000, val 0.450000, lr 1.000000e-03
cost 1.737430, train: 0.450000, val ©.450000, lr 1.000000¢-03
cost 1.642356, train: ©.500000, val ©.500000, lr 1.000000¢-03
cost 1.535239, train: 0.600000, val 0.600000, lr 1.000000e¢-03
cost 1.421527, train: 0.600000, val 0.600000, lr 1.000000e-03
dmam A WAL NAMN Bunbda. A AEAAAMN el A LAEAAAM Ta 2 AARAAARL AN
/ 200: cost 0.002694, train: 1.000000, val 1.000000, lr 1.000000¢-03
/ 200: cost ©.082674, train: 1.000000, val 1.000000, lr 1.000000¢-03
/ 200: cost ©.082655, train: 1.000000, val 1.6600000, lr 1.600000¢-83
/ 200: cost 0.002635, train: 1.000000, val 1.000000, lr 1.000000e-03
/ 200: cost 0.002617, train: 1.000000, val 1.000000, Lr 1.000000e-03
/ 200: cost 0,.002597, train: 1,.000000, val 1.000000, lr 1,000000¢-03

. model = init two layer model(32%32+3, 50, 10) # input
LetS try to traln nOW trainer = ClassifierTrainer()
e best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,

update='sgd’, learning rate decay=1,

| like to start with small e e
regularization and find

learning rate that

makes the loss go

down.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (.Q'I‘Ufts

82

Let’s try to train now...

Start with small
regularization and find
learning rate that
makes the loss go
down.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init two layer model(32+32+3, 50,

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=108, reg=0.000001,
update='sgd’, learning rate decay=1,

e,
|learniﬁg_rate=lr~6. verbose=True)

18) # input size,

Finished epoch 1 / 18:|cost 2.302576, |trair]: 0. L 6.1030060, 1r
Finished epoch 2 / 10:|cost 2.302582, |trair: ©. 1 6.1240060, 1r
Finished epoch 3 / 10:|cost 2.302558, |trair: ©. 1 6.138000, 1lr
Finished epoch 4 / 10:|cost 2.302519, |trair: ©. 1 6.151000, 1lr
Finished epoch 5 / 10:|cost 2.302517, |trair: ©. L 6.171000, lr
Finished epoch 6 / 10:|cost 2.302518, |trairn: O. L 8.172000, 1r
Finished epoch 7 / 10:|cost 2,302466, |trair: ©. 1 6.176000, 1r
Finished epoch 8 / 10:|cost 2.302452, |trairn: O. 1 6.1850060, 1r
Finished epoch 9 / 10:|cost 2.302459, |trair: ©. 1 6.192000, 1r
Finished epoch 10 / 10} cost 2.302420 tra'n 0. 198008 a

finished optimization.Lhest validatiod accuracy:

Loss barely changing

comp150d| @'Ihfts

hidden size,

1
1
1
1
1.
1
1
1
1.

number of

.000000¢-06
.000000¢ - 66
.000000e- 06
.000000e-06
000000e-06
.000000¢-06
.000000¢-06
.000000¢ - 66
000000e-06

classes

1 6.192000, lr 1.000080e-06

83

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init two layer model(32+*32+*3, 50, 10) # input size, hidden size, number of ¢

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sgd’, learning rate decay=1,

e,
|leornxﬁqﬁrate=lr-6. verbose=True)

Finished epoch 1 / 10:|cost 2,.302576, |trair: ©.680000, Val 6.103000, lr 1.000000e-
Finished epoch 2 / 10:|cost 2.302582, |trair: ©.121000, val 6.124060, 1lr 1.000000¢-
Finished epoch 3 / 10:|cost 2.302558, |trair: ©.119000, 1 9.138000, lr 1.000000e-
Finished epoch 4 / 10:|cost 2.302519, |trair: 0.127000, L 9.151000, lr 1.000000e-
Finished epoch 5 / 10:|cost 2.302517, |trair: ©.158000, L 8.171000, Llr 1.000000e-
Finished epoch 6 / 18:|cost 2.302518, |trair: ©.179000, L 6.172000, lr 1.000000e-
Finished epoch 7 / 10:|cost 2,302466, |[trair: ©.180000, val 6.176000, 1r 1.000000e-
Finished epoch 8 / 10:|cost 2.302452, |trair: 0.175600, 1 6.185000, 1r 1.000000¢-
Finished epoch 9 / 10:|cost 2.302459, |trair: ©.206000, 1 6.192000, lr 1.000000e-
Finished epoch 10 / 108} cost 2.3024208] train: ©.190000, [val 0.192000, lr 1.000800e
finished optimization.lbest validatiod accuracy: ©O.

Loss barely changing: Learning rate is
probably too low

comp150d| G}'I‘ufts

EEEEEEEEE

-06

84

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init_two layer model(32+32+3, 50, 10) # input size, hidden size, number of classes

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update='sqgd’, learning rate decay=1,

I,
|learnxﬁqwrate=lr-6. verbose=True)

Finished epoch 1 / 18:|cost 2,.302576, |trair]: ©.680000, 0.103000, lr 1.000000e-
Finished epoch 2 / 10:|cost 2.302582, |trair]: ©.121600, 9.124000, 1r 1.000000¢-
Finished epoch 3 / 10:|cost 2.302558, |trair: 0.119600, 9.138000, lr 1.000000e-
Finished epoch 4 / 10:|cost 2.302519, |trair: 0.127000, 9.151000, lr 1.000000e-
Finished epoch 5 / 10:|cost 2.302517, |trair: 0.158000, 0.171000, lr 1.000000e-
Finished epoch 6 / 10:]cost 2.3062518, |trair: ©.17%0600, 9.172000, Llr 1.0600000e-
Finished epoch 7 / 18:|cost 2,302466, |trair]: ©.180000, 0.176000, 1r 1.000000e-
Finished epoch 8 / 10:]|cost 2.302452, |trair: ©.1756000, 0.185600, 1r 1.000000¢-
Finished epoch 9 / 10:|cost 2.302459, |trair: 0.206000, 9.192000, lr 1.000000e-
Finished epoch 10 / 18} cost 2.302420] trajn: ©.190000, |val 6.192000, lr 1.000880e
finished optimization.lbest validatiog accuracy: O. 0

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%

though, what's up with that? (remember
this is softmax)

comp150d| @'rufts

EEEEEEEEE

-06

85

model = init two layer model(32+%32+%3, 50, 10)

Lets try to train now... e assinemie

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=10, reg=0.000001,
update=‘sqd’', learning rate decay=l,

sanple batches = 1

| like to start with small

A

regularization and find \

leammg rate that Okay now lets try learning rate 1e6. What could
makes the loss go possibly go wrong?

down.

loss not going down:
learning rate too low

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| c_’a'rllfts 86

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init two layer model(32+32+3, 50, 10) #

trainer = ClassifierTrainer()

best model, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,

num _epochs=10, reg=d.000001,
update=‘sgd’', learning rate decay=l,
sanple batches = True,

learning rate=let, verbose=True)

/home/karpathy/cs231n/code/cs231n/classifiers/neural net.py:50: RuntimeWarning: divide by zero en
countered in log

data loss = -np.sun(np.log(probsirange(N), yl)) / N
Jhome/karpathy/cs231n/code/cs23in/classifiers/neural net.py:48: Runtimewarning: invalid value enc
ountered in subtract

probs = np.exp(scores - np.max(scores, axis~l, keepdims«True))

Finished epoch 1 / 10: cost nan, train: 0.091000, val 0.087000, lr 1.000000e+06
Finished epoch 2 / 10: cost nan, train: 0.095000, val 0.087000, 1lr 1.000000e+06
Finished epoch 3 / 10: cost nan, train: ©.100000, val 0.087000, 1lr 1.000000e+06

cost: NaN almost
always means high
learning rate...

comp150dI C-Q'Ihfts 87

Lets try to train now...

| like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

model = init two layer model(32+32+3, 50, 10) # input
trainer = ClassifierTrainer()
best model, stats = trainer.train(X train, y train, X val, y val,

Finished
Finished
Finished
Finished
Finished
Finished

comp150dI C}'Ihfts

epoch
epoch
epoch
epoch
epoch
epoch

10: cost
190: cost
10: cost
: Cost
10: cost
18: cost

OV a WN -
MRNNNN SN
.

@

model, two layer net,

num epochs=10, reg=0.600001,
update='sgd’', learning rate decay=1,
sample batches = True,

learning rates=3e-3, verbosesTrue)

2.186654, train: 0.308000, val ©.306000, lr 3.000000e-03
2.176230, train: 0.330000, val ©.350000, lr 3.000000e-03
1.942257, train: 0.376000, val 0.352000, lr 3.000000e-03
1.827868, train: 0.329600, val 0.310000, lr 3.000000e-03

inf,
inf,

train: 0.128000, val 0.128000, lr 3.000000e-03
train: 0.144000, val 0.147600, Llr 3.000000e-03

3e-3 is still too high. Cost explodes....

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 ... 1e-9]

88

*Or
and

igi
Li

Hyperparameter Optimization

nal slides borrowed from Andrej Karpathy N
Fei-Fei, Stanford cs231n comp150d| c." mfts

89

Cross-validation strategy

Try coarse to fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
... (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

* Original slides borrowed from Andrej Karpathy A
and Li Fei-Fei, Stanford cs231n comp150d <-VTufts

90

For example: run coarse search for 5 epochs

for caunt in xrange(max cou): note it's best to optimize
r = 10**uniform(-3, -6) @ in Iog Space'

trainer = ClassifierTrainer()
model = init_two layer model(32%32*3, 50, 10) # input size, hidden size, number of classes
trainer = ClassifierTrainer()
best model local, stats = trainer.train(X train, y train, X val, y val,
model, two layer net,
num epochs=5, reg=reg,
update='momentum’, learning rate decay=0.9,
sample batches = True, batch size = 100,
learning rate=lr, verbose=False)

| val acc: 0.412000, Llr: 1.405206e-04, reg: 4.793564e-01, (1 / 100) |

val acc: ©.214000, lr: 7.231888e-06, reg: 2.32128le-04, (2 / 100)

val acc: 0.208000, lr: 2.119571e-06, reg: 8.011857e+01, (3 / 100)

val acc: 0.196000, lr: 1.551131e-05, reg: 4.374936e-05, (4 / 100)

val acc: 0.079000, lr: 1.753300e-05, reg: 1.200424e+03, (5 / 100)

val acc: 0.223000, lr: 4.215128e-05, req: 4.196174e+01, (6 / 100)

. |va1“acc: 0.441000, 1lr: 1.750259e-04, reg: 2.110807e-04, (7 / 100) |
nice val acc: 0.241000, lr: 6.749231e-05, reg: 4.226413e+01, (8 / 100)
——p | val acc: 0.482000, lr: 4.296863e-04, reg: 6.642555e-01, (9 / 100) |
val acc: 0.079000, lr: 5.401602e-06, reg: 1.599828e+04, (10 / 100)

val acc: 0.154000, lr: 1.618508e-06, reg: 4.925252e-01, (11 / 160)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @ .

......

Now run finer search...

max_count = 100 adjust range max_count = 100

for count in xrange(max_count): for count in xrange(max count):
reg = 18**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -6) lr = 10**uniform(-3, -4)

0.527000, 1r: 5.340517¢-04, reg: 4.697824¢-01, (0

—acc: 9. Tt 2. 94, reg:r 9. €04,
val_acc: 0.512000, lr: 8.680827¢-04, reg: 1.349727e-02, (2 / 108)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 108)
val_acc: 0.460000, Lr: 1.1137306e-04, reg: 5.244389e-02, (4 / 100) o _ -
val acc: 0.498000, Lr: 9.477776e-04, reg: 2.601293e-03, (5 / 100) 53% - relatively good
val acc: ©.469900, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
val_acc: 0.522000, \r: 5.586261e-04, reg: 2.312685e-04, (7 / 100)

val acc: ©.530000. lr: 5.808183¢-04. reg: 8.259964¢-82. (8 / 100) with 50 hidden neurons.
.010889¢-04, (9 / 100)

val_acc: 0.4890600, 1r: 1.979168¢-04, reg: 1

val _acc: 0.490000, 1r: 2.036031e-04, reg: 2.406271e-03, (16 / 160)
val _acc: 0.475000, 1r: 2.021162¢-04, reg: 2.287887¢-01, (11 / 160)
val_acc: 0.460000, 1r: 1.135527e-64, reg: 3.905040e-02, (12 / 100)
val acc: 0.515000, lr: 6.947668e-04, reg: 1.562808e-02, (13 / 1060)

[wval acc: ©.531000, Llr: 9.471549e-04, reg: 1.433895e-03, (14 / 100) |

val acc: 0.509000, lr: 3.14088Be-04, reg: 2.857518e-01, (15 / 100)
val acc: 0.514000, lr: 6.438349e-04, reg: 3.033781e-01, (16 / 100)
val acc: 0.502000, lr: 3.921784e-04, reg: 2.707126e-04, (17 / 100)
val _acc: 0.509000, lr: 9.752279¢-04, reg: 2.850865¢-03, (18 / 100)
val_acc: 0.500000, 1r: 2.412048¢-04, reg: 4.997821e-04, (19 / 100)
val_acc: 0.466000, 1r: 1.319314¢-04, reg: 1.189915¢-02, (20 / 100)
val acc: 0.516000, 1r: 8.039527¢-04, reg: 1.528291e-02, (21 / 160)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmfts

.........

Now run finer search...

max_count = 100 adjust range max_count = 100

for count in xrange(max_count): for count in xrange(max count):
reg = 18**uniform(-5, 5) > reg = 10**uniform(-4, 0)
lr = 10**uniform(-3, -6) lr = 10**uniform(-3, -4)

0.527000, 1r: 5.340517¢-04, reg: 4.697824¢-01, (0

—acc: 9. Tt 2. 94, reg:r 9. €04,
val_acc: 0.512000, lr: 8.680827¢-04, reg: 1.349727e-02, (2 / 108)
val_acc: 0.461000, lr: 1.028377e-04, reg: 1.220193e-02, (3 / 108)
val_acc: 0.460000, Lr: 1.1137306e-04, reg: 5.244389e-02, (4 / 100) o _ -
val acc: 0.498000, Lr: 9.477776e-04, reg: 2.601293e-03, (5 / 100) 53% - relatively good
val acc: ©.469900, lr: 1.484369e-04, reg: 4.328313e-01, (6 / 100) for a 2-layer neural net
val_acc: 0.522000, \r: 5.586261e-04, reg: 2.312685e-04, (7 / 100)

val acc: ©.530000. lr: 5.808183¢-04. reg: 8.259964¢-82. (8 / 100) with 50 hidden neurons.
.010889¢-04, (9 / 100)

val_acc: 0.489000, 1lr: 1.979168¢-04, reg: 1

val acc: 0.490000, 1r: 2.036031¢-04, reg: 2.406271e-03, (10 / 100) .

val acc: ©0.475000, lr: 2.021162e-84, reg: 2.287807e¢-01, (11 / 166) But this best cross-

val acc: 0.460000, 1r: 1.135527e-04, reg: 3.905040e-02, (12 / 100) H H H

val acc: 0.515000, lr: 6.947668e-04. reg: 1.562808e-02. (13 / 100) validation result is
[wval acc: 0.531000, lr: 9.47154%9e-04, reg: 1.433895e-03, (14 / 100) |€— worrying. Why?

val acc: 0.509000, Lr: 3.14088Be-04, reg: 2.857518e-01, (15 / 100)

val acc: 0.514000, lr: 6.438349e-64, reg: 3.03378le-01, (16 / 100)

val_acc: 0.502000, lr: 3.921784e-04, reg: 2.767126e-84, (17 / 100)

val_acc: 0.509000, lr: 9.752279¢-04, reg: 2.850865¢-03, (18 / 100)

val _acc: 0.500000, 1r: 2.412048¢-04, reg: 4.997821e-04, (19 / 100)

val_acc: 0.466000, 1r: 1.319314¢-04, reg: 1.189915¢-02, (20 / 100)

val acc: 0.516000, 1r: 8.039527¢-04, reg: 1.528291e-02, (21 / 100)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmfts

.........

Random Search vs. Grid Search

Grid Layout Random Lavyout

T -
@ Y]
- -—
])
= £
o o
— -~
i o
Q. o
- -
S =
=
(] (o
a o
= =
£ £
'z O O (@] -
- =
Important parameter |mportant parameter

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts

94

Hyperparameters to play with:

- network architecture

- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks
practitioner
- lots of N A 2:.,..:.
connections to oLt '
make
- lots of knobs to l
turn R 1L}
- want to get the)
best test
performance

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @T‘u'fts

Andrej Karpathy’s
cross-validation
“command center”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dI ((-Q'I’ufts

96

Monitor and visualize the loss curve

25

loss

low learning rate

high learning rate

good learning rate

epoch
= 0 0 & &0 80 100 p
Epoch 4

* Original slides borrowed from Andrej Karpathy 7
and Li Fei-Fei, Stanford cs231n comp150d @T‘u'fts 9

Loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

time

comp150d| g'lhfts

98

Loss

Bad initialization
—— aprime suspect

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

time

comp150dI C-Q'Ihfts

99

lossfunctions.tumblr.com Loss function specimen

= vald
[; “ |
3 ')
1 \ o}
T M ‘) ﬂx o I
. MM ‘ o ®
LR step function “This RNN smoothly forgets

validation loss everything it has learned.”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts

100

Monitor and visualize the accuracy:

080
075 i .r\.v
\
A AN Yo ™
A\l A
‘.\ J ‘ J
070 'A‘W‘: \ v
NA NN
065 A (\/ \’
g AN " v 'l'
3 J
O ‘ \ f
£ 060 ’[\‘,,‘l AR
§ / \J
[V
2 f
© 0ss N
J
f\l‘ 1.1 " \ A A A A
\ M A \ f\A f A
050 | V".‘ " ’.| vy \'. A l'\/lw} W/ \‘V‘\..’ \-/ 4 ‘I"’ [PV, ‘\J"'/\/\/\/—/ VAU
ALY, / WARRY'
A / \
\/ /
045
/(= Training accuracy
- Validation accuracy
040
0 20 % 20 100

[TN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

big gap = overfitting

=2 increase regularization strength?

No gap
=> increase model capacity?

comp150d| @'Ihfts

101

Track the ratio of weight updates / weight magnitudes:

assume parameter vector W and 1ts gradient vector dw
param scale = np.linalg.norm(W.ravel())

update = -learning rate*dW # simple SGD update

update scale = np.linalg.norm(update.ravel())

W += update # the actual update

print update scale / param scale # want ~le-3

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (‘_ETUftS 102

How Weights Change

Parameters p: ,
no learning Parameters p’:

002

001

0.00

weight values
S
=

-0.02

-0.03

lots of learning

fc6 0

N

1 il 1 il

. 04
03
02
01
0.0

weight values
1
o

-0.2

-0.4

~-0.5

0 20 40 60 80
Taining Iterations 1000x

100 120

Parameters p:

learning rate or
regularization are too

big and some weights are

exploding.
score 0

0 2 - 6 8 10

Training Iterations 100x

comp150d| B'Ihfts 103

Summary TLDRs

We looked in detail at;

- Activation Functions (use RelLU)

- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)

- Batch Normalization (use)

- Babysitting the Learning process

- Hyperparameter Optimization

(random sample hyperparams, in log space when
appropriate)

* Original slides borrowed from Andrej Karpathy N 104
and Li Fei-Fei, Stanford cs231n comp150d c_"mfts

Next

Look at:

- Parameter update schemes
- Learning rate schedules

- Gradient Checking

- Regularization (Dropout etc)
- Evaluation (Ensembles etc)

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d C.V'I‘llfts

105

