
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 1

Lecture 5:
Training Neural Networks,

Part I

Thursday February 2, 2017

comp150dl

Announcements!

- HW1 due today!

- Because of website typo, will accept homework 1 until
Saturday with no late penalty.

- HW2 comes out tomorrow. It is very large.

2

comp150dl

Python/Numpy of the Day

- numpy.random.uniform(low,high)

3

while solver.best_val_acc < 0.50:
 weight_scale = np.random.uniform(1e-5,1e-1)
 learning_rate = np.random.uniform(1e-8,1e-1)
 model = FullyConnectedNet([100, 100],
 weight_scale=weight_scale, dtype=np.float64)
 solver = Solver(model, data,
 num_epochs=<small number>…
)
 solver.train()
 print ‘Best val_acc = {} : lr was {} ws was {}’.format(solver.best_val_acc
 learning_rate,
 weight_scale)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 4

The effects of step size (or “learning rate”)

Regularization effect can be observed this way also.

very high reg too

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 5

Things you should know for your Project Proposal

“ConvNets need a lot
of data to train”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 6

Things you should know for your Project Proposal

“ConvNets need a lot
of data to train”

finetuning! we rarely ever
train ConvNets from scratch.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 7

ImageNet data

1. Train on ImageNet 2. Finetune network on
your own data

your
data

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 8

Transfer Learning with CNNs

1. Train on
ImageNet

2. If small dataset: fix
all weights (treat CNN
as fixed feature
extractor), retrain only
the classifier

i.e. swap the Softmax
layer at the end

3. If you have medium
sized dataset, “finetune”
instead: use the old weights
as initialization, train the full
network or only some of the
higher layers

retrain bigger portion of the
network, or even all of it.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 9

E.g. Caffe Model Zoo: Lots of pretrained ConvNets
https://github.com/BVLC/caffe/wiki/Model-Zoo

...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 10

Things you should know for your Project Proposal

“We have infinite
compute available
on AWS GPU
machines.”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 11

Things you should know for your Project Proposal

“We have infinite
compute available
on AWS GPU
machines.” You have finite compute.

Don’t be overly ambitious.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 12

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

Where we are now...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 13

(image credits
to Alec Radford)

Where we are now...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 14

Convolutional Network
(AlexNet)

input image
weights

loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 15

f

activations

gradients

“local gradient”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 16

Implementation: forward/backward API

Graph (or Net) object. (Rough psuedo code)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 17

Implementation: forward/backward API

(x,y,z are scalars)

*

x

y

z

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 18

Example: Torch Layers

=

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 19

Neural Network: without the brain stuff

(Before) Linear score function:

(Now) 2-layer Neural Network
 or 3-layer Neural Network

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 20

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 21

Neural Networks: Architectures

“Fully-connected” layers
“2-layer Neural Net”, or
“1-hidden-layer Neural Net”

“3-layer Neural Net”, or
“2-hidden-layer Neural Net”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 22

Training Neural Networks

A bit of history...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 23

A bit of history

Frank Rosenblatt, ~1957: Perceptron

The Mark I Perceptron machine was the first
implementation of the perceptron algorithm.

The machine was connected to a camera that used
20×20 cadmium sulfide photocells to produce a 400-
pixel image.

recognized
letters of the alphabet

update rule:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 24

A bit of history

Widrow and Hoff, ~1960: Adaline/Madaline

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 25

A bit of history

Rumelhart et al. 1986: First time back-propagation became popular

recognizable maths

comp150dl

Yann and his friends: CNNs in 1993

26

https://youtu.be/FwFduRA_L6Q

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 27

A bit of history

[Hinton and Salakhutdinov 2006]

Reinvigorated research in
Deep Learning

comp150dl

Ian Goodfellow on Autoencoders

28

“Autoencoders are useful for some things, but turned out not to be nearly as
necessary as we once thought. Around 10 years ago, we thought that deep nets
would not learn correctly if trained with only backprop of the supervised cost. We
thought that deep nets would also need an unsupervised cost, like the
autoencoder cost, to regularize them. When Google Brain built their first very large
neural network to recognize objects in images, it was an autoencoder (and it didn’t
work very well at recognizing objects compared to later approaches). Today, we
know we are able to recognize images just by using backprop on the supervised
cost as long as there is enough labeled data. There are other tasks where we do
still use autoencoders, but they’re not the fundamental solution to training deep
nets that people once thought they were going to be.”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 29

First strong results

Context-Dependent Pre-trained Deep Neural Networks
for Large Vocabulary Speech Recognition
George Dahl, Dong Yu, Li Deng, Alex Acero, 2010

Imagenet classification with deep convolutional
neural networks
Alex Krizhevsky, Ilya Sutskever, Geoffrey E Hinton, 2012

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 30

Overview
1. Model Architecture: One time setup

activation functions, preprocessing, weight
initialization, regularization, gradient checking

1. Training dynamics
 babysitting the learning process,

parameter updates, hyperparameter optimization
1. Evaluation
 model ensembles

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 31

Activation Functions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 32

Activation Functions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 33

Activation Functions

Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 34

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 35

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 36

sigmoid
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 37

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 38

Consider what happens when the input to a neuron (x)
is always positive:

What can we say about the gradients on w?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 39

Consider what happens when the input to a neuron is
always positive...

What can we say about the gradients on w?
Always all positive or all negative :(
(this is also why you want zero-mean data!)

hypothetical
optimal w
vector

zig zag path

allowed
gradient
update
directions

allowed
gradient
update
directions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 40

Activation Functions

Sigmoid

- Squashes numbers to range [0,1]
- Historically popular since they

have nice interpretation as a
saturating “firing rate” of a neuron

3 problems:

1. Saturated neurons “kill” the
gradients

2. Sigmoid outputs are not zero-
centered

3. exp() is a bit compute expensive

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 41

Activation Functions

tanh(x)

- Squashes numbers to range [-1,1]
- zero centered (nice)
- still kills gradients when saturated :(

[LeCun et al., 1991]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 42

Activation Functions - Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

ReLU
(Rectified Linear Unit)

[Krizhevsky et al., 2012]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 43

Activation Functions

ReLU
(Rectified Linear Unit)

- Computes f(x) = max(0,x)

- Does not saturate (in +region)
- Very computationally efficient
- Converges much faster than

sigmoid/tanh in practice (e.g. 6x)

- Not zero-centered output
- An annoyance:

hint: what is the gradient when x < 0?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 44

ReLU
gate

x

What happens when x = -10?
What happens when x = 0?
What happens when x = 10?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 45

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 46

DATA CLOUD
active ReLU

dead ReLU
will never activate
=> never update

=> people like to initialize
ReLU neurons with slightly
positive biases (e.g. 0.01)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 47

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

[Mass et al., 2013]
[He et al., 2015]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 48

Activation Functions

Leaky ReLU

- Does not saturate
- Computationally efficient
- Converges much faster than

sigmoid/tanh in practice! (e.g. 6x)
- will not “die”.

Parametric Rectifier (PReLU)

backprop into alpha
(parameter)

[Mass et al., 2013]
[He et al., 2015]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 49

Activation Functions
Exponential Linear Units (ELU)

- All benefits of ReLU
- Does not die
- Closer to zero mean outputs

- Computation requires exp()

[Clevert et al., 2015]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 50

Maxout “Neuron”
- Does not have the basic form of dot product ->

nonlinearity
- Generalizes ReLU and Leaky ReLU
- Linear Regime! Does not saturate! Does not die!

Problem: doubles the number of parameters/neuron :(

[Goodfellow et al., 2013]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 51

TLDR: In practice:

- Use ReLU. Be careful with your learning rates
- Try out Leaky ReLU / Maxout / ELU
- Try out tanh but don’t expect much
- Don’t use sigmoid

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 52

Data Preprocessing

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 53

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 54

Step 1: Preprocess the data
In practice, you may also see PCA and Whitening of the data

(data has diagonal
covariance matrix)

(covariance matrix is the
identity matrix)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 55

TLDR: In practice for Images: center only

- Subtract the mean image (e.g. AlexNet)
 (mean image = [32,32,3] array)
- Subtract per-channel mean (e.g. VGGNet)
 (mean along each channel = 3 numbers)

e.g. consider CIFAR-10 example with [32,32,3] images

Not common to normalize
variance, to do PCA or
whitening

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 56

Weight Initialization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 57

- Q: what happens when W=0 init is used?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 58

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 59

- First idea: Small random numbers
(gaussian with zero mean and 1e-2 standard deviation)

Works ~okay for small networks, but can lead to
non-homogeneous distributions of activations
across the layers of a network.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 60

Lets look at
some
activation
statistics

E.g. 10-layer net with
500 neurons on each
layer, using tanh non-
linearities, and
initializing as
described in last slide.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 61

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 62

All activations
become zero!

Q: think about the
backward pass.
What do the
gradients look like?

Hint: think about backward
pass for a W*X gate.

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 63

Almost all neurons
completely
saturated, either -1
and 1. Gradients
will be all zero.

*1.0 instead of *0.01

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 64

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 65

but when using the ReLU
nonlinearity it breaks.

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 66

He et al., 2015
(note additional /2)

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 67

He et al., 2015
(note additional /2)

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 68

Proper initialization is an active area of research…
Understanding the difficulty of training deep feedforward neural networks
by Glorot and Bengio, 2010

Exact solutions to the nonlinear dynamics of learning in deep linear neural networks by
Saxe et al, 2013

Random walk initialization for training very deep feedforward networks by Sussillo and
Abbott, 2014

Delving deep into rectifiers: Surpassing human-level performance on ImageNet
classification by He et al., 2015

Data-dependent Initializations of Convolutional Neural Networks by Krähenbühl et al., 2015

All you need is a good init, Mishkin and Matas, 2015
…

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 69

Batch Normalization
“you want unit gaussian activations? just make them so.”

[Ioffe and Szegedy, 2015]

consider a batch of activations at some layer.
To make each dimension unit gaussian, apply:

this is a vanilla
differentiable function...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 70

Batch Normalization
“you want unit gaussian activations?
just make them so.”

[Ioffe and Szegedy, 2015]

XN

D

1. compute the empirical mean and
variance independently for each
dimension.

2. Normalize

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 71

Batch Normalization [Ioffe and Szegedy, 2015]

FC

BN

tanh

FC

BN

tanh

...

Usually inserted after Fully
Connected / (or Convolutional, as
we’ll see soon) layers, and before
nonlinearity.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 72

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Note, the network can learn:

to recover the identity
mapping.

Normalize:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 73

Batch Normalization [Ioffe and Szegedy, 2015]

- Improves gradient flow through
the network

- Allows higher learning rates
- Reduces the strong dependence

on initialization
- Acts as a form of regularization

in a funny way, and slightly
reduces the need for dropout,
maybe

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 74

Batch Normalization [Ioffe and Szegedy, 2015]

Note: at test time BatchNorm layer
functions differently:

The mean/std are not computed
based on the batch. Instead, a single
fixed empirical mean of activations
during training is used.

(e.g. can be estimated during training
with running averages)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 75

Babysitting the Learning Process

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 76

Step 1: Preprocess the data

(Assume X [NxD] is data matrix,
each example in a row)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 77

Step 2: Choose the architecture:
say we start with one hidden layer of 50 neurons:

input
layer hidden layer

output layer
CIFAR-10
images, 3072
numbers

10 output
neurons, one
per class

50 hidden
neurons

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 78

Double check that the loss is reasonable: 

returns the loss and the
gradient for all parameters

disable regularization

loss ~2.3.
“correct “ for
10 classes

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 79

Double check that the loss is reasonable: 

crank up regularization

loss went up, good. (sanity check)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 80

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data The above code:

- take the first 20 examples from
CIFAR-10

- turn off regularization (reg = 0.0)
- use simple vanilla ‘sgd’

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 81

Lets try to train now…

Tip: Make sure that
you can overfit very
small portion of the
training data

Very small loss,
train accuracy 1.00,
nice!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 82

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 83

Let’s try to train now…

Start with small
regularization and find
learning rate that
makes the loss go
down.

Loss barely changing

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 84

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 85

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Loss barely changing: Learning rate is
probably too low

Notice train/val accuracy goes to 20%
though, what’s up with that? (remember
this is softmax)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 86

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low

Okay now lets try learning rate 1e6. What could
possibly go wrong?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 87

cost: NaN almost
always means high
learning rate...

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 88

Lets try to train now…

I like to start with small
regularization and find
learning rate that
makes the loss go
down.

loss not going down:
learning rate too low
loss exploding:
learning rate too high

3e-3 is still too high. Cost explodes….

=> Rough range for learning rate we
should be cross-validating is
somewhere [1e-3 … 1e-5]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 89

Hyperparameter Optimization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 90

Cross-validation strategy
Try coarse to fine cross-validation in stages

First stage: only a few epochs to get rough idea of what params work
Second stage: longer running time, finer search
… (repeat as necessary)

Tip for detecting explosions in the solver:
If the cost is ever > 3 * original cost, break out early

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 91

For example: run coarse search for 5 epochs

nice

note it’s best to optimize
in log space!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 92

Now run finer search...
adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 93

Now run finer search...
adjust range

53% - relatively good
for a 2-layer neural net
with 50 hidden neurons.

But this best cross-
validation result is
worrying. Why?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 94

Random Search vs. Grid Search

Random Search for Hyper-Parameter Optimization
Bergstra and Bengio, 2012

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 95

Hyperparameters to play with:
- network architecture
- learning rate, its decay schedule, update type
- regularization (L2/Dropout strength)

neural networks
practitioner

- lots of
connections to
make

- lots of knobs to
turn

- want to get the
best test
performance

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 96

Andrej Karpathy’s
cross-validation
“command center”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 97

Monitor and visualize the loss curve

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 98

Loss

time

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 99

Loss

time

Bad initialization
a prime suspect

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 100

lossfunctions.tumblr.com Loss function specimen

validation loss “This RNN smoothly forgets
everything it has learned.”

LR step function

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 101

Monitor and visualize the accuracy:

big gap = overfitting
=> increase regularization strength?

no gap
=> increase model capacity?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 102

Track the ratio of weight updates / weight magnitudes:

ratio between the values and updates: ~ 0.0002 / 0.02 = 0.01 (about okay)
want this to be somewhere around 0.001 or so

comp150dl

How Weights Change

103

Parameters p:
no learning Parameters p’:

lots of learning

Parameters p:
learning rate or
regularization are too
big and some weights are
exploding.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 104

Summary
We looked in detail at:

- Activation Functions (use ReLU)
- Data Preprocessing (images: subtract mean)
- Weight Initialization (use Xavier init)
- Batch Normalization (use)
- Babysitting the Learning process
- Hyperparameter Optimization
 (random sample hyperparams, in log space when
appropriate)

TLDRs

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 105

Next
Look at:

- Parameter update schemes
- Learning rate schedules
- Gradient Checking
- Regularization (Dropout etc)
- Evaluation (Ensembles etc)

