
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 1

Tuesday February 7, 2017

Lecture 6:
Training Neural Networks,

Part II

Tuesday February 7, 2017

comp150dl

Announcements!

• Don’t worry too much if you were late on HW1

• HW2 due February 24

• fully connected multi-layer nets, batch norm, dropout, etc.

• Email me you areas of interest for final project

• Some ideas on class webpage

• Guidelines for paper presentations on website

2

comp150dl

Python/Numpy of the Day
- numpy.where(<condition>, x, y)

- Vectorized version of the ternary expression x if condition else y, like a vectorized list comprehension

3

- Not very fast for large
arrays (because all the
work is being done in
pure Python)

- Will not work with
multidimensional arrays.

This is better!

comp150dl 4

New work out on Feb 2

https://arxiv.org/pdf/1702.00783.pdf

https://arxiv.org/pdf/1702.00783.pdf

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 5

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 6

Activation Functions
Sigmoid

tanh tanh(x)

ReLU max(0,x)

Leaky ReLU
max(0.1x, x)

Maxout

ELU

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 7

Data
Preprocessing

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 8

“Xavier initialization”
[Glorot et al., 2010]

Reasonable initialization.
(Mathematical derivation
assumes linear activations)

Epoch

Epoch

Epoch

M
ea

n
of

 W
ei

gh
ts

S
td

 o
f W

ei
gh

ts

H
is

to
gr

am
 o

f W
ei

gh
ts

Weight
Initialization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 9

Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash
the range if it wants to:

Normalize: - Improves gradient flow
through the network

- Allows higher learning rates
- Reduces the strong

dependence on initialization
- Acts as a form of

regularization in a funny way,
and slightly reduces the need
for dropout, maybe

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 10

Cross-validationBabysitting the
learning process

Loss barely changing:
Learning rate is probably
too low

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 11

Today:

- Parameter update schemes
- Learning rate schedules
- Dropout
- Gradient checking
- Model ensembles

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 12

Parameter Updates

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 13

Training a neural network, main loop:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 14

simple gradient descent update
now: complicate.

Training a neural network, main loop:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 15

Image credits:
Alec Radford

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 16

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 17

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 18

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge
towards the minimum with SGD? very slow progress
along flat direction, jitter along steep one

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 19

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu
coefficient).

- mu = usually ~0.5, 0.9, or 0.99
- (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 20

Momentum update

- Allows a velocity to “build up” along shallow directions
- Velocity becomes damped in steep direction due to quickly changing

sign

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 21

SGD
vs
Momentum

notice momentum
overshooting the target,
but overall getting to the
minimum much faster.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 22

Nesterov Momentum update

gradient
step

momentum
step

actual step

Ordinary momentum update:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 23

Nesterov Momentum update

“lookahead”
gradient step
(bit different than
original)

Nesterov momentum update

gradient
step

momentum
step

actual step

Momentum update:

momentum
step

actual step

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 24

Nesterov Momentum update

Nesterov: the only difference...
gradient
step

momentum
step

actual step

Momentum update:
“lookahead”
gradient step
(bit different than
original)

Nesterov momentum update

momentum
step

actual step

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 25

Nesterov Momentum update

“lookahead”
gradient step
(bit different than
original)

momentum
step

actual step

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 26

nag =
Nesterov
Accelerated
Gradient

Q: What kinds of
loss functions
could cause
problems for the
momentum
methods?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 27

AdaGrad update

Added element-wise scaling of the gradient based on
the historical sum of squares in each dimension

[Duchi et al., 2011]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 28

Q: What happens with AdaGrad?

AdaGrad update

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 29

Q2: What happens to the step size over long time?

AdaGrad update

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 30

RMSProp update [Tieleman and Hinton, 2012]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 31

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 32

Introduced in a slide in
Geoff Hinton’s Coursera
class, lecture 6

Cited by several
papers as:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 33

adagrad
rmsprop

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 34

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 35

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 36

Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 37

Adam update [Kingma and Ba, 2014]

RMSProp-like

bias correction
(only relevant in first few
iterations when t is small)

momentum

The bias correction compensates for the fact that m,v are
initialized at zero and need some time to “warm up”.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 38

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

Q: Which one of these
learning rates is best to use?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 39

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:
e.g. decay learning rate by half every
few epochs.

exponential decay:

1/t decay:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 40

Second order optimization methods

- Quasi-Newton methods (BGFS most popular):

- L-BFGS (Limited memory BFGS):
Does not form/store the full inverse Hessian.

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:
notice:
no hyperparameters! (e.g. learning rate)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 41

L-BFGS

- Usually works very well in full batch, deterministic mode
i.e. if you have a single, deterministic f(x) then L-BFGS will
probably work very nicely

- Does not transfer very well to mini-batch setting. Gives
bad results. Adapting L-BFGS to large-scale, stochastic
setting is an active area of research.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 42

Evaluation:
Model Ensembles

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 43

1. Train multiple independent models
2. At test time average their results

Enjoy 2% extra performance
All competition winners do this.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model.

44

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Fun Tips/Tricks:

- can also get a small boost from averaging multiple
model checkpoints of a single model. (different local
minima)

- keep track of (and use at test time) a running average
parameter vector:

45

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 46

Regularization (dropout)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 47

Regularization: Dropout
“randomly set some neurons to zero in the forward pass”

[Srivastava et
al., 2014]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 48

Example forward
pass with a 3-
layer network
using dropout

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 49

Waaaait a second…
How could this possibly be a good idea?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 50

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws
mischievous
look

cat
score

X

X

X

Waaaait a second…
How could this possibly be a good idea?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 51

At test time….

Ideally:
want to integrate out all the noise

Monte Carlo approximation:
do many forward passes with
different dropout masks, average all
predictions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 52

At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no
dropout).

Q: Suppose that with all inputs present at
test time the output of this neuron is x.

What would its output be during training
time, in expectation? (e.g. if p = 0.5)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 53

We can do something approximate analytically

At test time all neurons are active always
=> We must scale the activations so that for each neuron:
output at test time = expected output at training time

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 54

Dropout Summary

drop in forward pass

scale at test time

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 55

More common: “Inverted dropout”

test time is unchanged!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 56

Convolutional Neural Networks

[LeNet-5,
LeCun 1980]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 57

A bit of history:

Hubel & Wiesel,
1959
Receptive Fields of Single
Neurons in Cat’s Striate
Cortex

1962
Receptive Fields, Binocular
Interaction and Functional
Architecture in Cat’s Visual
Cortex

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 58

A bit of history
Topographical mapping in the cortex:
nearby cells in cortex represented
nearby regions in the visual field

Simple Cell:
cell in the primary visual
cortex that responds
primarily to oriented
edges and gratings

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 59

Hierarchical organization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 60

A bit of history:

Neurocognitron
[Fukushima 1980]

“sandwich” architecture (SCSCSC…)
simple cells: modifiable parameters
complex cells: perform pooling

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 61

A bit of history:
Gradient-based learning
applied to document
recognition
[LeCun, Bottou, Bengio, Haffner
1998]

LeNet-5

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 62

A bit of history:
ImageNet Classification with Deep
Convolutional Neural Networks
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 63

Fast-forward to today: ConvNets are everywhere

[Krizhevsky 2012]

Classification Retrieval

comp150dl 64

comp150dl 65

comp150dl

Self-Driving Cars

66

comp150dl

Art

67

comp150dl 68

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe 
http://caffe.berkeleyvision.org

69

http://caffe.berkeleyvision.org

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Overview

- From U.C. Berkeley
- Written in C++
- Has Python and MATLAB bindings
- Good for training or finetuning feedforward models

70

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 71

Most important tip...

Don’t be afraid to read the code!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 72

Caffe: Main classes
Blob: Stores data and

derivatives (header source)

Layer: Transforms bottom
blobs to top blobs (header + source)

Net: Many layers; computes
gradients via forward /
backward (header source)

Solver: Uses gradients to
update weights (header source)

data

DataLayer

InnerProductLayer

diffs
X

data

diffs
y

SoftmaxLossLayer

data

diffs
fc1

data

diffs
W

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/blob.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/blob.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/net.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/net.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/solver.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/solver.cpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Protocol Buffers

73

.proto file“Typed JSON”  
from Google  

Define “message types”
in .proto files 
 

https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Protocol Buffers

74

name: “John Doe”
id: 1234
email: “jdoe@example.com”

.proto file

.prototxt file

“Typed JSON”  
from Google  

Define “message types”
in .proto files 

Serialize instances to text
files (.prototxt) 

https://developers.google.com/protocol-buffers/

https://developers.google.com/protocol-buffers/

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Protocol Buffers

75

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto
<- All Caffe proto types defined here, good documentation!

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Training / Finetuning

76

No need to write code!
1. Convert data (run a script)
2. Define net (edit prototxt)
3. Define solver (edit prototxt)
4. Train (with pretrained weights) (run a script)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 77

Caffe Step 1: Convert Data
- DataLayer reading from LMDB is the

easiest
- Create LMDB using convert_imageset
- Create HDF5 file yourself using h5py
- From memory, using Python

(MemoryLayer)

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 78

Caffe Step 2: Define Net

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 79

Caffe Step 2: Define Net
Layers and Blobs
often have same
name!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 80

Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Caffe Step 2: Define Net

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 81

Caffe Step 2: Define Net
Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 82

Caffe Step 2: Define Net
Layers and Blobs
often have same
name!

Learning rates
(weight + bias)

Regularization
(weight + bias)

Number of output
classes

Set these to 0 to
freeze a layer

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Step 2: Define Net

83

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-
deploy.prototxt

● .prototxt can get ugly for
big models

● ResNet-152 prototxt is
6775 lines long!

● Not “compositional”; can’t
easily define a residual
block and reuse

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 84

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Caffe Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 85

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Caffe Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 86

Modified prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "my-fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 10
 }
}

Caffe Step 2: Define Net (finetuning)
Original prototxt:
layer {
 name: "fc7"
 type: "InnerProduct"
 inner_product_param {
 num_output: 4096
 }
}
[... ReLU, Dropout]
layer {
 name: "fc8"
 type: "InnerProduct"
 inner_product_param {
 num_output: 1000
 }
}

Pretrained weights:
“fc7.weight”: [values]
“fc7.bias”: [values]
“fc8.weight”: [values]
“fc8.bias”: [values]

Same name:
weights copied

Different name:
weights reinitialized

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 87

Caffe Step 3: Define Solver
Write a prototxt file defining a

SolverParameter
If finetuning, copy existing

solver.prototxt file
Change net to be your net
Change snapshot_prefix to your

output
Reduce base learning rate (divide

by 100)
Maybe change max_iter and

snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Step 4: Train!

./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/
pretrained_weights.caffemodel

88

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Step 4: Train!

./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/
pretrained_weights.caffemodel

-gpu -1 for CPU mode

89

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Step 4: Train!

./build/tools/caffe train \
 -gpu 0 \
 -model path/to/trainval.prototxt \
 -solver path/to/solver.prototxt \
 -weights path/to/
pretrained_weights.caffemodel

-gpu all for multi-GPU data parallelism

90

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Model Zoo

- AlexNet, VGG,
GoogLeNet, ResNet,  
plus others

91

https://github.com/BVLC/caffe/wiki/Model-Zoo

https://github.com/BVLC/caffe/wiki/Model-Zoo

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Python Interface

92

Not much documentation…
Look at Notebooks in caffe/examples
Read the code! Two most important files:
caffe/python/caffe/_caffe.cpp:

Exports Blob, Layer, Net, and Solver classes
caffe/python/caffe/pycaffe.py

Adds extra methods to Net class

https://github.com/BVLC/caffe/blob/master/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/master/python/caffe/pycaffe.py

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Python Interface

- Good for:
- Interfacing with numpy
- Extract features: Run net forward
- Compute gradients: Run net backward (DeepDream,

etc)
- Define layers in Python with numpy (CPU only)

93

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe Pros / Cons

(+) Good for feedforward networks
(+) Good for finetuning existing networks
(+) Train models without writing any code!
(+) Python interface is pretty useful!
(-) Need to write C++ / CUDA for new GPU layers
(-) Not good for recurrent networks
(-) Cumbersome for big networks (GoogLeNet, ResNet)

94

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Blobs

95

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

N-dimensional array for
storing activations and
weights

96

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

N-dimensional array for
storing activations and
weights

Two parallel tensors:
data: values
diffs: gradients

97

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

N-dimensional array for
storing activations
and weights

Two parallel tensors:
data: values
diffs: gradients

Stores CPU / GPU
versions of each
tensor

98

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Layer

A small unit of
computation

99

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

A small unit of computation
Forward: Use “bottom”

data to compute “top”
data

100

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

A small unit of computation
Forward: Use “bottom” data

to compute “top” data

Backward: Use “top” diffs
to compute “bottom” diffs

101

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

A small unit of computation
Forward: Use “bottom” data

to compute “top” data

Backward: Use “top” diffs to
compute “bottom” diffs

Separate CPU / GPU
implementations

102

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Tons of different layer types:

103

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

...

Caffe: Layer

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Tons of different layer types:
batch norm
convolution
cuDNN convolution

.cpp: CPU implementation

.cu: GPU implementation

104

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

...

Caffe: Layer

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Collects layers into a DAG

Run all or part of the net
forward and backward

105

https://github.com/BVLC/caffe/blob/master/include/caffe/net.hpp

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/net.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Solver

106

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Caffe: Solver

Trains a Net by running it forward / backward, updating weights

107

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Trains a Net by running it forward / backward, updating weights

Handles snapshotting, restoring from snapshots

108

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

Caffe: Solver

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Trains a Net by running it
forward / backward,
updating weights

Handles snapshotting,
restoring from snapshots

Subclasses implement
different update rules

109

https://github.com/BVLC/caffe/blob/master/include/caffe/sgd_solvers.hpp

Caffe: Solver

https://github.com/BVLC/caffe/blob/master/include/caffe/sgd_solvers.hpp

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl

Overview

110

Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU:
Data parallel

Yes Yes
cunn.DataParallelTable

Yes 
platoon

Yes

Multi-GPU:
Model parallel

No Yes 
fbcunn.ModelParallel

Experimental Yes (best)

Readable
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)

