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Tuesday February 7, 2017

Lecture 6: 
Training Neural Networks, 

Part II 

Tuesday February 7, 2017
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Announcements!

• Don’t worry too much if you were late on HW1 

• HW2 due February 24  

• fully connected multi-layer nets, batch norm, dropout, etc.   

• Email me you areas of interest for final project 

• Some ideas on class webpage 

• Guidelines for paper presentations on website
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Python/Numpy of the Day 
- numpy.where(<condition>, x, y)

- Vectorized version of the ternary expression x if condition else y, like a vectorized list comprehension

3

- Not very fast for large 
arrays (because all the 
work is being done in 
pure Python) 

- Will not work with 
multidimensional arrays.

This is better!
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New work out on Feb 2 

https://arxiv.org/pdf/1702.00783.pdf

https://arxiv.org/pdf/1702.00783.pdf
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Mini-batch SGD
Loop: 
1. Sample a batch of data 
2. Forward prop it through the graph, get loss 
3. Backprop to calculate the gradients 
4. Update the parameters using the gradient
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Activation Functions
Sigmoid

tanh    tanh(x)

ReLU    max(0,x)

Leaky ReLU 
max(0.1x, x)

Maxout

ELU
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Data  
Preprocessing
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“Xavier initialization” 
[Glorot et al., 2010] 

Reasonable initialization. 
(Mathematical derivation 
assumes linear activations)
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Batch Normalization [Ioffe and Szegedy, 2015]

And then allow the network to squash  
the range if it wants to:

Normalize: - Improves gradient flow 
through the network 

- Allows higher learning rates 
- Reduces the strong 

dependence on initialization 
- Acts as a form of 

regularization in a funny way, 
and slightly reduces the need 
for dropout, maybe
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Cross-validationBabysitting the 
learning process

Loss barely changing: 
Learning rate is probably 
too low
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Today:  

- Parameter update schemes 
- Learning rate schedules 
- Dropout 
- Gradient checking 
- Model ensembles
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Parameter Updates
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Training a neural network, main loop:
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simple gradient descent update 
now: complicate.

Training a neural network, main loop:
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Image credits: 
Alec Radford
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD?
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Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge 
towards the minimum with SGD? very slow progress 
along flat direction, jitter along steep one
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Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu 
coefficient). 

- mu = usually ~0.5, 0.9, or 0.99  
- (Sometimes annealed over time, e.g. from 0.5 -> 0.99)
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Momentum update

- Allows a velocity to “build up” along shallow directions 
- Velocity becomes damped in steep direction due to quickly changing 

sign
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SGD  
vs 
Momentum

notice momentum 
overshooting the target, 
but overall getting to the 
minimum much faster.
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Nesterov Momentum update

gradient 
step

momentum 
step

actual step

Ordinary momentum update:
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Nesterov Momentum update

“lookahead” 
gradient step 
(bit different than 
original)

Nesterov momentum update

gradient 
step

momentum 
step

actual step

Momentum update:

momentum 
step

actual step
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Nesterov Momentum update

Nesterov: the only difference...
gradient 
step

momentum 
step

actual step

Momentum update:
“lookahead” 
gradient step 
(bit different than 
original)

Nesterov momentum update

momentum 
step

actual step
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Nesterov Momentum update

“lookahead” 
gradient step 
(bit different than 
original)

momentum 
step

actual step



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 26

nag =  
Nesterov 
Accelerated 
Gradient

Q: What kinds of 
loss functions 
could cause 
problems for the 
momentum 
methods? 
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AdaGrad update

Added element-wise scaling of the gradient based on 
the historical sum of squares in each dimension

[Duchi et al., 2011]
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Q: What happens with AdaGrad?

AdaGrad update
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Q2: What happens to the step size over long time?

AdaGrad update
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RMSProp update [Tieleman and Hinton, 2012]
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Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6
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Introduced in a slide in 
Geoff Hinton’s Coursera 
class, lecture 6

Cited by several 
papers as:
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adagrad 
rmsprop
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Adam update [Kingma and Ba, 2014]

(incomplete, but close)
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Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Adam update [Kingma and Ba, 2014]

(incomplete, but close)

momentum

RMSProp-like

Looks a bit like RMSProp with momentum
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Adam update [Kingma and Ba, 2014]

RMSProp-like

bias correction 
(only relevant in first few 
iterations when t is small)

momentum

The bias correction compensates for the fact that m,v are 
initialized at zero and need some time to “warm up”.
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

Q: Which one of these 
learning rates is best to use?
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SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have 
learning rate as a hyperparameter.

=> Learning rate decay over time!

step decay:  
e.g. decay learning rate by half every 
few epochs. 

exponential decay: 

1/t decay:
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Second order optimization methods

- Quasi-Newton methods (BGFS most popular): 

- L-BFGS (Limited memory BFGS):  
Does not form/store the full inverse Hessian.

second-order Taylor expansion:

Solving for the critical point we obtain the Newton parameter update:
notice:  
no hyperparameters! (e.g. learning rate)
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L-BFGS 

- Usually works very well in full batch, deterministic mode  
i.e. if you have a single, deterministic f(x) then L-BFGS will 
probably work very nicely 

- Does not transfer very well to mini-batch setting. Gives 
bad results. Adapting L-BFGS to large-scale, stochastic 
setting is an active area of research.
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Evaluation:  
Model Ensembles
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1. Train multiple independent models 
2. At test time average their results 

Enjoy 2% extra performance 
All competition winners do this. 
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Fun Tips/Tricks: 

- can also get a small boost from averaging multiple 
model checkpoints of a single model.

44
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Fun Tips/Tricks: 

- can also get a small boost from averaging multiple 
model checkpoints of a single model. (different local 
minima) 

- keep track of (and use at test time) a running average 
parameter vector:

45
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Regularization (dropout)



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 47

Regularization: Dropout 
“randomly set some neurons to zero in the forward pass”

[Srivastava et 
al., 2014]
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Example forward 
pass with a 3-
layer network 
using dropout
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Waaaait a second…  
How could this possibly be a good idea?
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Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws
mischievous  
look

cat  
score

X

X

X

Waaaait a second…  
How could this possibly be a good idea?
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At test time….

Ideally:  
want to integrate out all the noise 

Monte Carlo approximation: 
do many forward passes with 
different dropout masks, average all 
predictions
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At test time….
Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no 
dropout). 

Q: Suppose that with all inputs present at 
test time the output of this neuron is x. 

What would its output be during training 
time, in expectation? (e.g. if p = 0.5) 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 53

We can do something approximate analytically

At test time all neurons are active always 
=> We must scale the activations so that for each neuron: 
output at test time = expected output at training time
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Dropout Summary

drop in forward pass

scale at test time



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 55

More common: “Inverted dropout”

test time is unchanged!
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Convolutional Neural Networks


[LeNet-5, 
LeCun 1980]
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A bit of history: 

Hubel & Wiesel, 
1959 
Receptive Fields of Single 
Neurons in Cat’s Striate 
Cortex 

1962 
Receptive Fields, Binocular 
Interaction and Functional 
Architecture in Cat’s Visual 
Cortex
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A bit of history 
Topographical mapping in the cortex:
nearby cells in cortex represented  
nearby regions in the visual field

Simple Cell:
cell in the  primary visual 
cortex that responds 
primarily to oriented 
edges and gratings 
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Hierarchical organization



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 60

A bit of history: 

Neurocognitron 
[Fukushima 1980]

“sandwich” architecture (SCSCSC…) 
simple cells: modifiable parameters 
complex cells: perform pooling
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A bit of history: 
Gradient-based learning 
applied to document 
recognition 
[LeCun, Bottou, Bengio, Haffner 
1998]

LeNet-5
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A bit of history: 
ImageNet Classification with Deep 
Convolutional Neural Networks 
[Krizhevsky, Sutskever, Hinton, 2012]

“AlexNet”
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Fast-forward to today: ConvNets are everywhere

[Krizhevsky 2012]

Classification Retrieval
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Self-Driving Cars

66
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Art
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Caffe 
http://caffe.berkeleyvision.org 

69

http://caffe.berkeleyvision.org
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Caffe Overview

- From U.C. Berkeley 
- Written in C++ 
- Has Python and MATLAB bindings 
- Good for training or finetuning feedforward models

70
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Most important tip...

Don’t be afraid to read the code!
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Caffe: Main classes
Blob: Stores data and 

derivatives (header source) 

Layer: Transforms bottom 
blobs to top blobs (header + source) 

Net: Many layers; computes 
gradients via forward / 
backward (header source) 

Solver: Uses gradients to 
update weights (header source)

data

DataLayer

InnerProductLayer

diffs
X

data

diffs
y

SoftmaxLossLayer

data

diffs
fc1

data

diffs
W

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/blob.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/blob.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/layer.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/net.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/net.cpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/include/caffe/solver.hpp
https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/solver.cpp
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Caffe: Protocol Buffers

73

.proto file“Typed JSON”  
from Google  

Define “message types” 
in .proto files 
 

https://developers.google.com/protocol-buffers/ 

https://developers.google.com/protocol-buffers/
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Caffe: Protocol Buffers

74

name: “John Doe” 
id: 1234 
email: “jdoe@example.com”

.proto file

.prototxt file

“Typed JSON”  
from Google  

Define “message types” 
in .proto files 

Serialize instances to text 
files (.prototxt) 

https://developers.google.com/protocol-buffers/ 

https://developers.google.com/protocol-buffers/


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Protocol Buffers

75

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto  
<- All Caffe proto types defined here, good documentation! 

https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto
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Caffe: Training / Finetuning

76

No need to write code! 
1. Convert data (run a script) 
2. Define net (edit prototxt) 
3. Define solver (edit prototxt) 
4. Train (with pretrained weights) (run a script)
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Caffe Step 1: Convert Data
- DataLayer reading from LMDB is the 

easiest 
- Create LMDB using convert_imageset 
- Create HDF5 file yourself using h5py 
- From memory, using Python 

(MemoryLayer)

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/tools/convert_imageset.cpp
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Caffe Step 2: Define Net
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Caffe Step 2: Define Net
Layers and Blobs 
often have same 
name!
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Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Caffe Step 2: Define Net
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Caffe Step 2: Define Net
Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Number of output 
classes
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Caffe Step 2: Define Net
Layers and Blobs 
often have same 
name!

Learning rates 
(weight + bias)

Regularization 
(weight + bias)

Number of output 
classes

Set these to 0 to 
freeze a layer
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Caffe Step 2: Define Net

83

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-
deploy.prototxt 

● .prototxt can get ugly for 
big models 

● ResNet-152 prototxt is 
6775 lines long! 

● Not “compositional”; can’t 
easily define a residual 
block and reuse

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152-deploy.prototxt
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Modified prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "my-fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 10 
  } 
}

Caffe Step 2: Define Net (finetuning)
Original prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 1000 
  } 
} 

Pretrained weights: 
“fc7.weight”: [values] 
“fc7.bias”: [values] 
“fc8.weight”: [values] 
“fc8.bias”: [values]



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 85

Modified prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "my-fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 10 
  } 
}

Caffe Step 2: Define Net (finetuning)
Original prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 1000 
  } 
} 

Pretrained weights: 
“fc7.weight”: [values] 
“fc7.bias”: [values] 
“fc8.weight”: [values] 
“fc8.bias”: [values]

Same name: 
weights copied
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Modified prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "my-fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 10 
  } 
}

Caffe Step 2: Define Net (finetuning)
Original prototxt: 
layer { 
  name: "fc7" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 4096 
  } 
} 
[... ReLU, Dropout] 
layer { 
  name: "fc8" 
  type: "InnerProduct" 
  inner_product_param { 
    num_output: 1000 
  } 
} 

Pretrained weights: 
“fc7.weight”: [values] 
“fc7.bias”: [values] 
“fc8.weight”: [values] 
“fc8.bias”: [values]

Same name: 
weights copied

Different name: 
weights reinitialized
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Caffe Step 3: Define Solver
Write a prototxt file defining a 

SolverParameter 
If finetuning, copy existing 

solver.prototxt file 
Change net to be your net 
Change snapshot_prefix to your 

output 
Reduce base learning rate (divide 

by 100) 
Maybe change max_iter and 

snapshot

https://github.com/BVLC/caffe/blob/85bb397acfd383a676c125c75d877642d6b39ff6/src/caffe/proto/caffe.proto#L92
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Caffe Step 4: Train!

./build/tools/caffe train \ 
  -gpu 0 \ 
  -model path/to/trainval.prototxt \ 
  -solver path/to/solver.prototxt \ 
  -weights path/to/
pretrained_weights.caffemodel

88

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe Step 4: Train!

./build/tools/caffe train \ 
  -gpu 0 \ 
  -model path/to/trainval.prototxt \ 
  -solver path/to/solver.prototxt \ 
  -weights path/to/
pretrained_weights.caffemodel 

-gpu -1 for CPU mode

89

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp
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Caffe Step 4: Train!

./build/tools/caffe train \ 
  -gpu 0 \ 
  -model path/to/trainval.prototxt \ 
  -solver path/to/solver.prototxt \ 
  -weights path/to/
pretrained_weights.caffemodel 

-gpu all for multi-GPU data parallelism

90

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp 

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Model Zoo

- AlexNet, VGG, 
GoogLeNet, ResNet,  
plus others
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https://github.com/BVLC/caffe/wiki/Model-Zoo 

https://github.com/BVLC/caffe/wiki/Model-Zoo


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Python Interface
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Not much documentation…  
Look at Notebooks in caffe/examples 
Read the code! Two most important files: 
caffe/python/caffe/_caffe.cpp: 

Exports Blob, Layer, Net, and Solver classes 
caffe/python/caffe/pycaffe.py 

Adds extra methods to Net class

https://github.com/BVLC/caffe/blob/master/python/caffe/_caffe.cpp
https://github.com/BVLC/caffe/blob/master/python/caffe/pycaffe.py


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Python Interface

- Good for: 
- Interfacing with numpy 
- Extract features: Run net forward 
- Compute gradients: Run net backward (DeepDream, 

etc) 
- Define layers in Python with numpy (CPU only)
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* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe Pros / Cons

(+) Good for feedforward networks 
(+) Good for finetuning existing networks 
(+) Train models without writing any code! 
(+) Python interface is pretty useful! 
(-) Need to write C++ / CUDA for new GPU layers 
(-) Not good for recurrent networks 
(-) Cumbersome for big networks (GoogLeNet, ResNet)
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* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Blobs
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https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp 

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

N-dimensional array for 
storing activations and 
weights
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https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp 

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

N-dimensional array for 
storing activations and 
weights 

Two parallel tensors: 
data: values 
diffs: gradients
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https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp 

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

N-dimensional array for 
storing activations 
and weights 

Two parallel tensors: 
data: values 
diffs: gradients 

Stores CPU / GPU 
versions of each 
tensor
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https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp 

Caffe: Blobs

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Layer

A small unit of 
computation
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https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp 

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

A small unit of computation 
Forward: Use “bottom” 

data to compute “top” 
data
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https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp 

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

A small unit of computation 
Forward: Use “bottom” data 

to compute “top” data 

Backward: Use “top” diffs 
to compute “bottom” diffs
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https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp 

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

A small unit of computation 
Forward: Use “bottom” data 

to compute “top” data 

Backward: Use “top” diffs to 
compute “bottom” diffs 

Separate CPU / GPU 
implementations
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https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp 

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/layer.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Tons of different layer types:
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https://github.com/BVLC/caffe/tree/master/src/caffe/layers 

...

Caffe: Layer

https://github.com/BVLC/caffe/tree/master/src/caffe/layers


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Tons of different layer types: 
batch norm 
convolution 
cuDNN convolution 

.cpp: CPU implementation 

.cu: GPU implementation
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https://github.com/BVLC/caffe/tree/master/src/caffe/layers 

...

Caffe: Layer

https://github.com/BVLC/caffe/tree/master/src/caffe/layers


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Collects layers into a DAG 

Run all or part of the net 
forward and backward
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https://github.com/BVLC/caffe/blob/master/include/caffe/net.hpp 

Caffe: Layer

https://github.com/BVLC/caffe/blob/master/include/caffe/net.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Solver
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https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp 

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Caffe: Solver

Trains a Net by running it forward / backward, updating weights
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https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp 

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Trains a Net by running it forward / backward, updating weights 

Handles snapshotting, restoring from snapshots
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https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp 

Caffe: Solver

https://github.com/BVLC/caffe/blob/master/include/caffe/solver.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Trains a Net by running it 
forward / backward, 
updating weights 

Handles snapshotting, 
restoring from snapshots 

Subclasses implement 
different update rules

109

https://github.com/BVLC/caffe/blob/master/include/caffe/sgd_solvers.hpp 

Caffe: Solver

https://github.com/BVLC/caffe/blob/master/include/caffe/sgd_solvers.hpp


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl

Overview
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Caffe Torch Theano TensorFlow

Language C++, Python Lua Python Python

Pretrained Yes ++ Yes ++ Yes (Lasagne) Inception

Multi-GPU: 
Data parallel

Yes Yes 
cunn.DataParallelTable

Yes 
platoon

Yes

Multi-GPU: 
Model parallel

No Yes 
fbcunn.ModelParallel

Experimental Yes (best)

Readable 
source code

Yes (C++) Yes (Lua) No No

Good at RNN No Mediocre Yes Yes (best)


