Lecture 6: Training Neural Networks, Part II

Tuesday February 7, 2017

Announcements!

- Don't worry too much if you were late on HW1
- HW2 due February 24
 - fully connected multi-layer nets, batch norm, dropout, etc.
- Email me you areas of interest for final project
 - Some ideas on class webpage
- Guidelines for paper presentations on website

Python/Numpy of the Day

- numpy.where(<condition>, x, y)
- Vectorized version of the ternary expression x if condition else y, like a vectorized list comprehension

```
In [143]: result = [(x if c else y)
....: for x, y, c in zip(xarr, yarr, cond)]
In [144]: result
Out[144]: [1.100000000000001, 2.200000000000002, 1.3, 1.39999999999
```

- Not very fast for large arrays (because all the work is being done in pure Python)
- Will not work with multidimensional arrays.150dl

Pixel Recursive Super Resolution

Ryan Dahl * Mohammad Norouzi Jonathon Shlens

Google Brain {rld.mnorouzi.shlens}#google.com

Abstract

We present a pixel recursive super resolution model that synthesizes realistic details into image way correspond their resolution. A low resolution image may correspond to multiple plausible high resolution images, thus modeling the super resolution process with a pixel independent conditional model often results in averaging different detailshence bluery edges. By contrast, own model is able to represent a multimodal conditional distribution by properly modeling the statistical dependencies among the high resolution image pixels, conditioned on a low resolution input. We employ a Pixel/CNN architecture to define a strong prior over natural images and jointly optimize this prior with a deep conditioning convolutional network. Human evaluations indicate that samples from our proposed model look

1. Introduction

The problem of super resolution entails artificially enlarging a low resolution photograph to recover a plausible high resolution version of it. When the zoom factor is large, the input image does not contain all of the information necessary to accurately construct a high resolution image. Thus, the problem is underspecified and many plausible high resolution images exist that match the low resolution input image. This problem is significant for improving the state-of-the-art in super resolution, and more generally 8×8 input 32×32 samples ground truth

Figure 1: Illustration of our probabilistic pixel recursive super resolution model trained end-to-end on a dataset of celebrity faces. The left column shows 8×8 low resolution inputs from the test set. The middle and last columns show 32×32 images as predicted by our model vs. the ground trath. Our model incorporates strong face priors to synthesize realistic hair and skin details.

New work out on Feb 2

https://arxiv.org/pdf/1702.00783.pdf

Mini-batch SGD

Loop:

- 1. Sample a batch of data
- 2. Forward prop it through the graph, get loss
- 3. Backprop to calculate the gradients
- 4. Update the parameters using the gradient

Data Preprocessing

input layer had mean 0.001800 and std 1.001311 hidden layer 1 had mean 0.001198 and std 0.027953 hidden layer 2 had mean 0.000175 and std 0.486051 hidden layer 3 had mean 0.0000306 and std 0.4867723 hidden layer 4 had mean 0.000306 and std 0.357108 hidden layer 5 had mean 0.000389 and std 0.357108 hidden layer 6 had mean 0.000389 and std 0.292116 hidden layer 7 had mean 0.000291 and std 0.27387 hidden layer 8 had mean 0.000291 and std 0.254935 hidden layer 9 had mean 0.000139 and std 0.229208 hidden layer 10 had mean 0.000139 and std 0.228008

"Xavier initialization" [Glorot et al., 2010]

Reasonable initialization. (Mathematical derivation assumes linear activations)

Weight Initialization

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Batch Normalization

[loffe and Szegedy, 2015]

Normalize:

$$\widehat{x}^{(k)} = \frac{x^{(k)} - \mathbf{E}[x^{(k)}]}{\sqrt{\mathrm{Var}[x^{(k)}]}}$$

And then allow the network to squash the range if it wants to:

$$y^{(k)} = \gamma^{(k)} \widehat{x}^{(k)} + \beta^{(k)}$$

- Improves gradient flow through the network
- Allows higher learning rates
- Reduces the strong dependence on initialization
- Acts as a form of regularization in a funny way, and slightly reduces the need for dropout, maybe

Babysitting the learning process

<pre>model = init two layer model(32*32*3, 50, 10) # input size, hidden size, number of cl trainer = ClassifierTrainer() best_model, stats = trainer.train(X_train, y_train, X_val, y_val,</pre>	asses
Finished epoch 1 / 10: cost 2.302576, train: 0.000000, val 0.103000, lr 1.0000000-05	
Finished epoch 2 / 10: cost 2.302582, trair: 0.121000, val 0.124000, tr 1.000000e-06	
Finished epoch 3 / 10: cost 2.302558, trair: 0.119000, val 0.138000, lr 1.0000000-06	
Finished epoch 4 / 10: cost 2.302519, train: 0.127000, val 0.151000, lr 1.000000e-06	
Finished epoch 5 / 10: cost 2.302517, train: 0.158000, val 0.171000, lr 1.000000e-06	
Finished epoch 6 / 10: cost 2.302518, trair: 0.179000, val 0.172000, lr 1.0000000e-06	
Finished epoch 7 / 10: cost 2.302456, trair: 0.180000, val 0.176000, lr 1.0000000e-06	
Finished epoch 8 / 10: cost 2.302452, train: 0.175000, val 0.185000, lr 1.0000000-06	
Finished epoch 9 / 10: cost 2,302459, train: 0,206000, val 0,192000, lr 1.0000000-06	
Finished epoch 10 / 10 cost 2.302420 train: 0.190000, val 0.192009, lr 1.000000e-06	
finished optimization, best validation accuracy: 0.192000	

Loss barely changing: Learning rate is probably too low

Cross-validation

Important parameter

Random Layout

Important parameter

Today:

- Parameter update schemes
- Learning rate schedules
- Dropout
- Gradient checking
- Model ensembles

Parameter Updates

Training a neural network, main loop:

Training a neural network, main loop:

simple gradient descent update now: complicate.

Image credits: Alec Radford

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

15

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with SGD?

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with SGD?

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Suppose loss function is steep vertically but shallow horizontally:

Q: What is the trajectory along which we converge towards the minimum with SGD? very slow progress along flat direction, jitter along steep one

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Momentum update

- Physical interpretation as ball rolling down the loss function + friction (mu coefficient).
 - mu = usually ~0.5, 0.9, or 0.99
 - (Sometimes annealed over time, e.g. from 0.5 -> 0.99)

Momentum update

- Allows a velocity to "build up" along shallow directions
- Velocity becomes damped in steep direction due to quickly changing sign

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

SGD vs Momentum

notice momentum overshooting the target, but overall getting to the minimum much faster.

Momentum update
v = mu * v - learning_rate * dx # integrate velocity
x += v # integrate position

Ordinary momentum update: momentum step actual step gradient step

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Q: What kinds of loss functions could cause problems for the momentum methods?

AdaGrad update

[Duchi et al., 2011]

Added element-wise scaling of the gradient based on the historical sum of squares in each dimension

AdaGrad update

Q: What happens with AdaGrad?

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

AdaGrad update

Q2: What happens to the step size over long time?

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

RMSProp update

[Tieleman and Hinton, 2012]

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
 - The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- · rmsprop: Keep a moving average of the squared gradient for each weight

$$MeanSquare(w, t) = 0.9 MeanSquare(w, t-1) + 0.1 \left(\frac{\partial E}{\partial w}(t)\right)$$

 Dividing the gradient by \(\sqrt{MeanSquare(w, t)}\) makes the learning work much better (Tijmen Tieleman, unpublished). Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

rmsprop: A mini-batch version of rprop

- rprop is equivalent to using the gradient but also dividing by the size of the gradient.
 - The problem with mini-batch rprop is that we divide by a different number for each mini-batch. So why not force the number we divide by to be very similar for adjacent mini-batches?
- rmsprop: Keep a moving average of the squared gradient for each weight

$$MeanSquare(w, t) = 0.9 MeanSquare(w, t-1) + 0.1 \left(\frac{\partial E}{\partial w}(t)\right)$$

 Dividing the gradient by \(\sqrt{MeanSquare(w, t)}\) makes the learning work much better (Tijmen Tieleman, unpublished). Introduced in a slide in Geoff Hinton's Coursera class, lecture 6

Cited by several papers as:

[52] T. Tieleman and G. E. Hinton. Lecture 6.5-rmsprop: Divide the gradient by a running average of its recent magnitude., 2012.

Adam update

(incomplete, but close)

[Kingma and Ba, 2014]

#	Adam	
m	<pre>= betal*m + (1-betal)*dx # update first moment</pre>	
v	= beta2*v + (1-beta2)*(dx**2) # update second mo	ment
х	+= - learning_rate * m / (np.sqrt(v) + 1e-7)	

Adam update

(incomplete, but close)

Looks a bit like RMSProp with momentum

Adam update (incomplete, but close)

[Kingma and Ba, 2014]

Looks a bit like RMSProp with momentum

Adam update

[Kingma and Ba, 2014]

The bias correction compensates for the fact that m,v are initialized at zero and need some time to "warm up".

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

Q: Which one of these learning rates is best to use?

SGD, SGD+Momentum, Adagrad, RMSProp, Adam all have **learning rate** as a hyperparameter.

=> Learning rate decay over time!

step decay:

e.g. decay learning rate by half every few epochs.

exponential decay: $\alpha = \alpha_0 e^{-kt}$

1/t decay:
$$lpha=lpha_0/(1+kt)$$

Second order optimization methods

second-order Taylor expansion:

$$J(\boldsymbol{\theta}) \approx J(\boldsymbol{\theta}_0) + (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0) + \frac{1}{2} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)^{\top} \boldsymbol{H} (\boldsymbol{\theta} - \boldsymbol{\theta}_0)$$

Solving for the critical point we obtain the Newton parameter update:

$$\boldsymbol{\theta}^* = \boldsymbol{\theta}_0 - \boldsymbol{H}^{-1} \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta}_0)$$

notice:

no hyperparameters! (e.g. learning rate)

- Quasi-Newton methods (**BGFS** most popular):
- L-BFGS (Limited memory BFGS): Does not form/store the full inverse Hessian.

L-BFGS

- Usually works very well in full batch, deterministic mode i.e. if you have a single, deterministic f(x) then L-BFGS will probably work very nicely
- Does not transfer very well to mini-batch setting. Gives bad results. Adapting L-BFGS to large-scale, stochastic setting is an active area of research.

Evaluation: Model Ensembles

Train multiple independent models
 At test time average their results

Enjoy 2% extra performance All competition winners do this.

Fun Tips/Tricks:

- can also get a small boost from averaging multiple model checkpoints of a single model.

Fun Tips/Tricks:

- can also get a small boost from averaging multiple model checkpoints of a single model. (different local minima)
- keep track of (and use at test time) a running average parameter vector:

while True:	
<pre>data_batch = dataset.sample_data_batch()</pre>	
loss = network.forward(data_batch)	
<pre>dx = network.backward()</pre>	
x += - learning_rate * dx	
<pre>x_test = 0.995*x_test + 0.005*x # use for test</pre>	set

Regularization (dropout)

Regularization: **Dropout**

"randomly set some neurons to zero in the forward pass"

(a) Standard Neural Net

(b) After applying dropout.

[Srivastava et al., 2014]

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

p = 0.5 # probability of keeping a unit active. higher = less dropout

```
def train_step(X):
    """ X contains the data """
```

forward pass for example 3-layer neural network

H1 = np.maximum(0, np.dot(W1, X) + b1)

U1 = np.random.rand(*H1.shape)

H1 *= U1 # drop!

H2 = np.maximum(0, np.dot(W2, H1) + b2)

U2 = np.random.rand(*H2.shape) H2 *= U2 # drop!

out = np.dot(W3, H2) + b3

backward pass: compute gradients... (not shown)
perform parameter update... (not shown)

Example forward pass with a 3layer network using dropout

Waaaait a second... How could this possibly be a good idea?

Waaaait a second... How could this possibly be a good idea?

Forces the network to have a redundant representation.

At test time....

Ideally:

want to integrate out all the noise

Monte Carlo approximation:

do many forward passes with different dropout masks, average all predictions

At test time....

Can in fact do this with a single forward pass! (approximately)

Leave all input neurons turned on (no dropout).

Q: Suppose that with all inputs present at test time the output of this neuron is x.

What would its output be during training time, in expectation? (e.g. if p = 0.5)

We can do something approximate analytically

def predict(X):

```
# ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3
```

At test time all neurons are active always => We must scale the activations so that for each neuron: output at test time = expected output at training time

Vanilla Dropout: Not recommended implementation (see notes below) """ Dropout Summary p = 0.5 # probability of keeping a unit active. higher = less dropout def train_step(X): """ X contains the data """ # forward pass for example 3-layer neural network H1 = np.maximum(0, np.dot(W1, X) + b1) U1 = np.random.rand(*H1.shape) H1 *= U1 # drop! drop in forward pass H2 = np.maximum(0, np.dot(W2, H1) + b2)U2 = np.random.rand(*H2.shape) < p # second dropout mask H2 *= U2 # drop! out = np.dot(W3, H2) + b3# backward pass: compute gradients... (not shown) # perform parameter update... (not shown)

def predict(X):

ensembled forward pass
H1 = np.maximum(0, np.dot(W1, X) + b1) * p # NOTE: scale the activations
H2 = np.maximum(0, np.dot(W2, H1) + b2) * p # NOTE: scale the activations
out = np.dot(W3, H2) + b3

scale at test time

More common: "Inverted dropout"

p = 0.5 # probability of keeping a unit active. higher = less dropout

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

A bit of history:

Hubel & Wiesel,

1959

Receptive Fields of Single Neurons in Cat's Striate Cortex

1962 Receptive

Receptive Fields, Binocular Interaction and Functional Architecture in Cat's Visual Cortex

A bit of history

Simple Cell:

cell in the primary visual cortex that responds primarily to oriented edges and gratings

Topographical mapping in the cortex:

nearby cells in cortex represented nearby regions in the visual field

Gabor filter-type receptive field typical for a simple cell. Blue regions indicate inhibition, red facilitation

Hierarchical organization

A bit of history:

Neurocognitron [Fukushima 1980]

"sandwich" architecture (SCSCSC...) simple cells: modifiable parameters complex cells: perform pooling

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

A bit of history: Gradient-based learning applied to document recognition [LeCun, Bottou, Bengio, Haffner 1998]

LeNet-5

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

A bit of history: ImageNet Classification with Deep Convolutional Neural Networks [Krizhevsky, Sutskever, Hinton, 2012]

"AlexNet"

Fast-forward to today: ConvNets are everywhere

Classification

Retrieval

[Krizhevsky 2012]

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Self-Driving Cars

What is the color of the coat?

Traditional VQA: analyze the whole image -> analyze question -> give answer: brown Attention based VQA: find coat -> judge the color of coat -> give answer: yellow

What is the color of the umbrella?

Traditional VQA: analyze the whole image -> analyze question -> give answer: green

Attention based VQA: find umbrella -> judge the color of umbrella -> give answer: red

Caffe http://caffe.berkeleyvision.org

Caffe Overview

- From U.C. Berkeley
- Written in C++
- Has Python and MATLAB bindings
- Good for training or finetuning feedforward models

Most important tip...

Don't be afraid to read the code!

Caffe: Main classes

- **Blob**: Stores data and derivatives (header source)
- Layer: Transforms bottom blobs to top blobs (header + source)
- Net: Many layers; computes gradients via forward / backward (header source)

Solver: Uses gradients to update weights (header source)

Caffe: Protocol Buffers

"Typed JSON" from Google

Define "message types" in .proto files .proto file

message Person {
 required string name = 1;
 required int32 id = 2;
 optional string email = 3;
}

https://developers.google.com/protocol-buffers/

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Caffe: Protocol Buffers

"Typed JSON" from Google

Define "message types" in .proto files

Serialize instances to text files (.prototxt)

https://developers.google.com/protocol-buffers/

.proto file

```
message Person {
  required string name = 1;
  required int32 id = 2;
  optional string email = 3;
```

.prototxt file

```
name: "John Doe"
id: 1234
email: "jdoe@example.com"
```


Caffe: Protocol Buffers

64	message NotParamoter {	182	message SolverParameter I
65	optional string name = 1; // consider giving the network a name	10.2	
66	// The input blobs to the network.	103	11 Providenting the basis and basis activity
67	repeated string input = 3;	104	// Specifying the train and test networks
68	// The shape of the input blobs.	105	
69	repeated BlobShape input_shape = 8;	106	// Exactly one train net must be specified using one of the following fields:
		107	// train_net_param, train_net, net_param, net
71	// 4D input dimensions deprecated. Use "shape" instead.	108	// One or more test nets may be specified using any of the following fields:
72	// If specified, for each input blob there should be four	109	// test net param, test net, net param, net
73	// values specifying the num, channels, height and width of the input blob.	110	// If more than one test net field is specified (e.g., both net and
74	// Thus, there should be a total of (4 * #input) numbers.		// fast not are considered, they will be evaluated in the field order sizes
	repeated int32 input_dim = 4;		// test_net are specified), they will be evaluated in the field order given
76		112	<pre>// above: (1) test_net_param, (2) test_net, (3) net_param/net.</pre>
77	// Whether the network will force every layer to carry out backward operation.	113	<pre>// A test_iter must be specified for each test_net.</pre>
78	// If set False, then whether to carry out backward is determined	114	<pre>// A test_level and/or a test_stage may also be specified for each test_net.</pre>
79	// automatically according to the net structure and learning rates.	115	
	optional bool force_backward = 5 [default = false];	116	
81	// The current "state" of the network, including the phase, level, and stage.	117	// Proto filename for the train pet, possibly combined with one or more
82	// Some layers may be included/excluded depending on this state and the states	110	17 Foot factories for the cruck met, possibly construct much one of more
83	<pre>// specified in the layers' include and exclude fields.</pre>	118	// test nets.
64	optional NetState state = 6;	119	optional string net = 24;
85		120	// Inline train net param, possibly combined with one or more test nets.
86	// Print debugging information about results while running Net::Forward,	121	optional NetParameter net_param = 25;
87	// Net::Backward, and Net::Update.	122	· · ·
0.0	optional bool debug_info = 7 [default = false];	123	optional string train net = 1: // Proto filename for the train net.

<u>https://github.com/BVLC/caffe/blob/master/src/caffe/proto/caffe.proto</u> <- All Caffe proto types defined here, good documentation!

Caffe: Training / Finetuning

No need to write code!

- 1. Convert data (run a script)
- 2. Define net (edit prototxt)
- 3. Define solver (edit prototxt)
- 4. Train (with pretrained weights) (run a script)

Caffe Step 1: Convert Data

- DataLayer reading from LMDB is the easiest
- Create LMDB using <u>convert_imageset</u>
- Create HDF5 file yourself using h5py
- From memory, using Python (MemoryLayer)


```
name: "LogisticRegressionNet"
layers {
  top: "data"
  top: "label"
  name: "data"
  type: HDF5 DATA
  hdf5 data param {
    source: "examples/hdf5 classification/data/train.txt"
    batch size: 10
  include {
    phase: TRAIN
  }
layers {
  bottom: "data"
  top: "fc1"
  name: "fc1"
  type: INNER PRODUCT
  blobs lr: 1
  blobs lr: 2
  weight decay: 1
  weight decay: 0
```

```
inner product param {
    num output: 2
    weight filler {
      type: "gaussian"
      std: 0.01
    bias filler {
      type: "constant"
      value: 0
layers {
  bottom: "fc1"
  bottom: "label"
  top: "loss"
  name: "loss"
  type: SOFTMAX LOSS
```



```
name: "LogisticRegressionNet"
layers {
                          Layers and Blobs
 top: "data"
 top: "label"
                          often have same
 name: "data"
 type: HDF5 DATA
                          name!
 hdf5 data param {
   source: "examples/hdf5 classification/data/train.txt"
   batch size: 10
 include {
   phase: TRAIN
layers {
 bottom: "data"
 top: "fc1"
 name: "fc1"
 type: INNER PRODUCT
 blobs lr: 1
 blobs lr: 2
 weight decay: 1
 weight decay: 0
```

inner product param { num output: 2 weight filler { type: "gaussian" std: 0.01 bias filler { type: "constant" value: 0 layers { bottom: "fc1" bottom: "label" top: "loss" name: "loss" type: SOFTMAX LOSS

inner product param { num output: 2 weight filler { type: "gaussian" std: 0.01 bias filler { type: "constant" value: 0 layers { bottom: "fc1" bottom: "label" top: "loss" name: "loss" type: SOFTMAX LOSS

Number of output classes inner_product baram { num output: 2 weight filler { type: "gaussian" std: 0.01 bias filler { type: "constant" value: 0 layers { bottom: "fc1" bottom: "label" top: "loss" name: "loss" type: SOFTMAX LOSS

Number of output classes inner_product_param { num output: 2 weight filler { type: "gaussian" std: 0.01 bias filler { type: "constant" value: 0 layers { bottom: "fc1" bottom: "label" top: "loss" name: "loss" type: SOFTMAX LOSS

- .prototxt can get ugly for big models
- ResNet-152 prototxt is 6775 lines long!
- Not "compositional"; can't easily define a residual block and reuse

1	name: "ResNet-152"	6747	layer {
2	input: "data"	6748	bottom: "res5c"
3	input_dim: 1	6749	top: "pool5"
4	input_dim: 3	6750	name: "pool5"
5	input_dim: 224	6754	type: "Pooling"
6	input_dim: 224	6752	pooling param (
7		675.2	pooring param (
	layer {	0753	kernel_size: /
	bottom: "data"	6754	stride: 1
10	top: "conv1"	6755	pool: AVE
11	name: "conv1"	6756	}
12	type: "Convolution"	6757	}
13	convolution_param {	6758	
14	num_output: 64	6759	layer {
15	kernel_size: 7	6760	bottom: "pool5"
16	pad: 3	6761	top: "fc1000"
17	stride: 2	6762	name: "fc1000"
18	bias_term: false	6763	type: "InperProduct"
19)	6764	inner product param (
	>	6765	min output: 1000
21		0700	inun_output. 2000
22	layer {	6766	,
23	bottom: "conv1"	6767)
24	top: "conv1"	6768	
25	name: "bn_conv1"	6769	layer {
26	type: "BatchNorm"	6770	bottom: "fc1000"
27	batch_norm_param {	6771	top: "prob"
28	use_global_stats: true	6772	name: "prob"
29)	6773	type: "Softmax"
)	6774	1

https://github.com/KaimingHe/deep-residual-networks/blob/master/prototxt/ResNet-152deploy.prototxt

Caffe Step 2: Define Net (finetuning)

Original prototxt:

```
laver {
 name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
laver {
 name: "fc8"
  type: "InnerProduct"
  inner product param {
    num output: 1000
```

Pretrained weights:

"fc7.weight": [values]
"fc7.bias": [values]
"fc8.weight": [values]
"fc8.bias": [values]

Modified prototxt:

```
laver {
  name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
laver {
  name: "my-fc8"
  type: "InnerProduct"
  inner product param {
    num output: 10
```


Caffe Step 2: Define Net (finetuning)

Original prototxt: layer { "fc7" name: "innerr roduct" type: inner product param num output: 4096 [... ReLU, Dropout] laver { name: "fc8" type: "InnerProduct" inner product param { num output: 1000

Same name: weights copied

Protrained weights:-

fc7.weight": [values] fc7.bias": [values]

"IC8.Weight": [values]
"fc8.bias": [values]

Modified prototxt: layer { "fc7" name: type """ roduct" inner product param { num output: 4096 [... ReLU, Dropout] laver { name: "my-fc8" type: "InnerProduct" inner product param { num output: 10

Caffe Step 2: Define Net (finetuning)

Original prototxt:

```
laver {
       "fc7"
 name:
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
layer
 name: "fc8"
  type: "InnerProduct"
  inner product param {
    num output: 1000
```

Same name: weights copied

Pretrained weights:

"fc7.weight": [values]
"fc7.bias": [values]
"fc8.weight": [values]
"fc8.bias": [values]

Different name: weights reinitialized

Modified prototxt:

```
laver {
  name: "fc7"
  type: "InnerProduct"
  inner product param {
    num output: 4096
[... ReLU, Dropout]
layer {
  name: "my-fc8"
  type: "InnerProduct"
  inner product param {
    num output: 10
```


Caffe Step 3: Define Solver

Write a prototxt file defining a <u>SolverParameter</u>

- If finetuning, copy existing solver.prototxt file
 - Change net to be your net
 - Change snapshot_prefix to your output
 - Reduce base learning rate (divide by 100)

Maybe change max_iter and snapshot

14

- net: "models/bvlc_alexnet/train_val.prototxt"
- 2 test_iter: 1000
- 3 test_interval: 1000
- 4 base_lr: 0.01
- 5 lr_policy: "step"
- 6 gamma: 0.1
- 7 stepsize: 100000
- 8 display: 20
- 9 max_iter: 450000
- 10 momentum: 0.9
- 11 weight_decay: 0.0005
- 12 snapshot: 10000
 - snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train"
 - solver_mode: GPU

Caffe Step 4: Train!

```
./build/tools/caffe train \
  -gpu 0 \
  -model path/to/trainval.prototxt \
  -solver path/to/solver.prototxt \
  -weights path/to/
pretrained weights.caffemodel
```

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe Step 4: Train!

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe Step 4: Train!

./build/tools/caffe train \ -gpu 0 \ -model path/to/trainval.prototxt \ -solver path/to/solver.prototxt \ -weights path/to/ pretrained_weights.caffemodel -gpu all for multi-GPU data parallelism

https://github.com/BVLC/caffe/blob/master/tools/caffe.cpp

Caffe: Model Zoo

 AlexNet, VGG, GoogLeNet, ResNet, plus others

https://github.com/BVLC/caffe/wiki/Model-Zoo

Caffe: Python Interface

Not much documentation...

- Look at Notebooks in caffe/examples
- Read the code! Two most important files:
- <u>caffe/python/caffe/_caffe.cpp</u>:

Exports Blob, Layer, Net, and Solver classes

caffe/python/caffe/pycaffe.py

Adds extra methods to Net class

* Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

Caffe: Python Interface

- Good for:
- Interfacing with numpy
- Extract features: Run net forward
- Compute gradients: Run net backward (DeepDream, etc)
- Define layers in Python with numpy (CPU only)

Caffe Pros / Cons

(+) Good for feedforward networks (+) Good for finetuning existing networks (+) Train models without writing any code! (+) Python interface is pretty useful! (-) Need to write C++ / CUDA for new GPU layers (-) Not good for recurrent networks (-) Cumbersome for big networks (GoogLeNet, ResNet)


```
template <typename Dtype>
class Blob {
  public:
    Blob()
        : data_(), diff_(), count_(0), capacity_(0) {}
    /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
```

```
explicit Blob(const vector<int>& shape);
```

```
219 const Dtype* cpu_data() const;
```

```
void set_cpu_data(Dtype* data);
```

```
const int* gpu_shape() const;
```

```
2 const Dtype* gpu_data() const;
```

```
3 const Dtype* cpu_diff() const;
```

```
224 const Dtype* gpu_diff() const;
```

```
25 Dtype* mutable_cpu_data();
```

```
6 Dtype* mutable_gpu_data();
```

```
27 Dtype* mutable_cpu_diff();
```

```
28 Dtype* mutable_gpu_diff();
```

```
8 protected:
```

28

29

33

```
269 shared_ptr<SyncedMemory> data_;
```

```
270 shared_ptr<SyncedMemory> diff_;
```

```
271 shared_ptr<SyncedMemory> shape_data_;
```

```
272 vector<int> shape_;
```

```
273 int count_;
```

274 int capacity_;

N-dimensional array for storing activations and weights

23	template <typename dtype=""></typename>
24	class Blob {
25	public:
26	Blob()
27	: data_(), diff_(), count_(0), capacity_(0) {}
28	
29	<pre>/// @brief Deprecated; use <code>Blob(const vector<int>& shape)</int></code>.</pre>
30	explicit Blob(const int num, const int channels, const int height,
31	const int width);
32	explicit Blob(const vector <int>& shape);</int>
11	
219	<pre>const Dtype* cpu_data() const;</pre>
220	<pre>void set_cpu_data(Dtype* data);</pre>
221	<pre>const int* gpu_shape() const;</pre>
222	<pre>const Dtype* gpu_data() const;</pre>
223	<pre>const Dtype* cpu_diff() const;</pre>
224	<pre>const Dtype* gpu_diff() const;</pre>
225	<pre>Dtype* mutable_cpu_data();</pre>
226	<pre>Dtype* mutable_gpu_data();</pre>
227	<pre>Dtype* mutable_cpu_diff();</pre>
228	<pre>Dtype* mutable_gpu_diff();</pre>
268	protected:
269	shared_ptr <syncedmemory> data_;</syncedmemory>
270	<pre>shared_ptr<syncedmemory> diff_;</syncedmemory></pre>
271	shared_ptr <syncedmemory> shape_data_;</syncedmemory>
272	<pre>vector<int> shape_;</int></pre>
273	int count_;
274	<pre>int capacity_;</pre>

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

/

N-dimensional array for storing activations and weights

Two parallel tensors: data: values **diffs**: gradients

```
template <typename Dtype>
    class Blob {
     public:
      Blob()
           : data_(), diff_(), count_(0), capacity_(0) {}
      /// @brief Deprecated; use <code>Blob(const vector<int>& shape)</code>.
29
      explicit Blob(const int num, const int channels, const int height,
```

```
const int width);
explicit Blob(const vector<int>& shape);
```

```
219
       const Dtype* cpu_data() const;
       void set_cpu_data(Dtype* data);
       const int* gpu_shape() const;
       const Dtype* gpu_data() const;
       const Dtype* cpu_diff() const;
224
       const Dtype* gpu_diff() const;
       Dtype* mutable_cpu_data();
       Dtype* mutable_gpu_data();
       Dtype* mutable_cpu_diff();
       Dtype* mutable_gpu_diff();
       protected:
```

shared_ptr<SyncedMemory> data_; shared_ptr<SyncedMemory> diff_;

```
shared_ptr<SyncedMemory> shape_data_;
```

```
vector<int> shape_;
```

```
int count_;
```

```
274
       int capacity_;
```

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

33

N-dimensional array for storing activations and weights

Two parallel tensors: data: values diffs: gradients

Stores CPU / GPU versions of each tensor

```
23 template <typename Dtype>
24 class Blob {
25 public:
26 Blob()
27  : data_(), diff_(), count_(0), capacity_(0) {}
28
29 /// @brief Deprecated: use <code>Blob(const vector<in)</pre>
```

const Dtype* cpu_data() const; void set_cpu_data(Dtype* data); const int* gpu_shape() const; const Dtype* gpu_data() const; const Dtype* cpu_diff() const; const Dtype* gpu_diff() const; Dtype* mutable_cpu_data(); Dtype* mutable_gpu_data(); Dtype* mutable_cpu_diff(); Dtype* mutable_gpu_diff();

protected:

- shared_ptr<SyncedMemory> data_;
- shared_ptr<SyncedMemory> diff_;
- shared_ptr<SyncedMemory> shape_data_;
- vector<int> shape_;

```
int count_;
```

```
274 int capacity_;
```

https://github.com/BVLC/caffe/blob/master/include/caffe/blob.hpp

33

219

269

A small unit of computation

32	template <typename dtype=""></typename>
33	class Layer {
34	public:
334	/** (brief Using the CPU device, compute the layer output. */
335	virtual void Forward_cpu(const vector<8lob <dtype>*>& bottom,</dtype>
336	const vector <blob<dtype>*>& top) = 0;</blob<dtype>
337	/**
338	* @brief Using the GPU device, compute the layer output.
339	Fall back to Forward_cpu() if unavailable.
340	*/
341	virtual void Forward_gpu(const vector <blob<dtype>*>& bottom,</blob<dtype>
342	const vector <blob<dtype>">& top) (</blob<dtype>
343	// LOG(WARNING) << "Using CPU code as backup.";
344	return Forward_cpu(bottom, top);
345)
346	
347	/**
348	* @brief Using the CPU device, compute the gradients for any parameters and
349	* for the bottom blobs if propagate_down is true.
350	1/
351	virtual void Backward_cpu(const vector <blob<dtype>*>& top,</blob<dtype>
352	const vector <bool>& propagate_down,</bool>
353	<pre>const vector<blob<dtype>*>& bottom) = 0;</blob<dtype></pre>
354	/**
355	* @brief Using the GPU device, compute the gradients for any parameters and
356	* for the bottom blobs if propagate_down is true.
357	Fall back to Backward_cpu() if unavailable.
358	1/
359	virtual void Backward_gpu{const vector <blob<dtype>*>& top,</blob<dtype>
360	const vector <bool>& propagate_down,</bool>
361	const vector <blob<dtype>">& bottom) {</blob<dtype>
362	// LOG(WARNING) << "Using CPU code as backup.";
363	Backward_cpu(top, propagate_down, bottom);
364	3

A small unit of computation

Forward: Use "bottom" data to compute "top" data

```
template <typename Dtype>
class Layer {
public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
  * @brief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
 virtual void Forward_gpu[const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) {
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
  * @brief Using the CPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate_down is true.
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) = 0;
   * @brief Using the GPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate_down is true.
   .
           Fall back to Backward_cpu() if unavailable.
  */
 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
   Backward_cpu(top, propagate_down, bottom);
```


A small unit of computation

Forward: Use "bottom" data to compute "top" data

Backward: Use "top" diffs to compute "bottom" diffs

```
template <typename Dtype>
class Layer {
 public:
 /** @brief Using the CPU device, compute the layer output. */
 virtual void Forward_cpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>*>& top) = 0;
  * Øbrief Using the GPU device, compute the layer output.
           Fall back to Forward_cpu() if unavailable.
   .
  */
 virtual void Forward_gpu(const vector<Blob<Dtype>*>& bottom,
     const vector<Blob<Dtype>">& top) {
   // LOG(WARNING) << "Using CPU code as backup.";
   return Forward_cpu(bottom, top);
  * @brief Using the CPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate_down is true.
 virtual void Backward_cpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>">& bottom) = 0;
  * Bbrief Using the GPU device, compute the gradients for any parameters and
           for the bottom blobs if propagate_down is true.
           Fall back to Backward_cpu() if unavailable.
 virtual void Backward_gpu(const vector<Blob<Dtype>*>& top,
     const vector<bool>& propagate_down,
     const vector<Blob<Dtype>*>& bottom) {
   // LOG(WARNING) << "Using CPU code as backup.";
   Backward_cpu(top, propagate_down, bottom);
```


A small unit of computation

Forward: Use "bottom" data to compute "top" data

Backward: Use "top" diffs to compute "bottom" diffs

Separate **CPU** / **GPU** implementations

Tons of different layer types:

Branch: master - caffe / src / caffe / layers /

jeffdonahue Remove incorrect cast of gemm int arg to Dtype in BiasLayer

-	
absval_layer.cpp	dismantle layer headers
absval_layer.cu	dismantle layer headers
accuracy_layer.cpp	dismantle layer headers
argmax_layer.cpp	dismantle layer headers
base_conv_layer.cpp	enable dilated deconvolution
base_data_layer.cpp	dismantle layer headers
base_data_layer.cu	dismantle layer headers
batch_norm_layer.cpp	dismantle layer headers
batch_norm_layer.cu	dismantle layer headers

. . .

Conv_layer.cpp	add support for 2D dilated convolution
Conv_layer.cu	dismantle layer headers
Cudnn_conv_layer.cpp	dismantle layer headers
Cudnn_conv_layer.cu	Fix CuDNNConvolutionLayer for cuDNN v4

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

Tons of different layer types: batch norm convolution cuDNN convolution

.cpp: CPU implementation **.cu**: GPU implementation

Branch: master - caffe / src / caffe / layers /

jeffdonahue Remove incorrect cast of gemm int arg to Dtype in BiasLayer absval_layer.cpp dismantle layer headers absval_layer.cu dismantle layer headers accuracy_layer.cpp dismantle layer headers argmax_layer.cpp dismantle layer headers base_conv_layer.cpp enable dilated deconvolution base_data_layer.cpp dismantle layer headers base_data_layer.cu dismantle layer headers batch_norm_layer.cpp dismantle layer headers batch_norm_layer.cu dismantle layer headers

Image: conv_layer.cpp add support for 2D dilated convolution Image: conv_layer.cu dismantle layer headers Image: cudnn_conv_layer.cpp dismantle layer headers Image: cudnn_conv_layer.cu Fix CuDNNConvolutionLayer for cuDNN v4

https://github.com/BVLC/caffe/tree/master/src/caffe/layers

. . .

Collects layers into a DAG

Run all or part of the net **forward** and **backward**

3	template <typename dtype=""></typename>
1	class Net {
5	public:
	explicit Net(const NetParameter& param, const Net* root_net = NULL);
,	explicit Net(const string& param_file, Phase phase,
	const Net* root net = NULL):
	virtual ~Net() {}
	/**
	* The From and To variants of Forward and Backward operate on the
	* (topological) ordering by which the net is specified. For general DAG
	* networks, note that (1) computing from one layer to another might entail
	 extra computation on unrelated branches, and (2) computation starting in the middle may be incorrect if all of the layers of a fac in are not
	* included.
	Dtype ForwardFromTo(int start, int end);
	Dtype ForwardFrom(int start);
	Dtype ForwardTo(int end);
	/// @brief Run forward using a set of bottom blobs, and return the result.
	<pre>const vector<sioo-bitype>'>s Forward(const vector<sioo-bitype>' > & bottom, Dtype* loss = NULL);</sioo-bitype></sioo-bitype></pre>
7	7**
	* The network backward should take no input and output, since it solely
9	* computes the gradient w.r.t the parameters, and the data has already been
	* provided during the forward pass.
1	*/
2	<pre>void Backward();</pre>
3	<pre>void BackwardFromTo(int start, int end);</pre>
6	<pre>void BackwardFrom(int start);</pre>
-	and d Deplement added and be

Caffe: Solver

40 template <typename Dtype>
41 class Solver {

public:

42

56

59

- // The main entry of the solver function. In default, iter will be zero. Pass
- // in a non-zero iter number to resume training for a pre-trained net.
- virtual void Solve(const char* resume_file = NULL);
- inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }

void Step(int iters);

- 60 // The Restore method simply dispatches to one of the
- 61 // RestoreSolverStateFrom___ protected methods. You should implement these
 - 2 // methods to restore the state from the appropriate snapshot type.

void Restore(const char* resume_file);

- 64 // The Solver::Snapshot function implements the basic snapshotting utility
- 65 // that stores the learned net. You should implement the SnapshotSolverState()
- 66 // function that produces a SolverState protocol buffer that needs to be
- 67 // written to disk together with the learned net.
- 8 void Snapshot();

Caffe: Solver

40	template <typename dtype=""></typename>
41	class Solver (
42	public:
55	// The main entry of the solver function. In default, iter will be zero. Pass
56	// in a non-zero iter number to resume training for a pre-trained net.
57	virtual void Solve(const char* resume_file = NULL);
58	inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }
59	<pre>void Step(int iters);</pre>
	// The Restore method simply dispatches to one of the
	// RestoreSolverStateFrom protected methods. You should implement these
62	// methods to restore the state from the appropriate snapshot type.
63	<pre>void Restore(const char* resume_file);</pre>
64	// The Solver::Snapshot function implements the basic snapshotting utility
65	// that stores the learned net. You should implement the SnapshotSolverState()
66	// function that produces a SolverState protocol buffer that needs to be
67	// written to disk together with the learned net.
68	<pre>void Snapshot();</pre>

Trains a Net by running it forward / backward, updating weights

Caffe: Solver

40 41 42	<pre>template <typename dtype=""> class Solver { public:</typename></pre>
55 56 57 58 59	<pre>// The main entry of the solver function. In default, iter will be zero. Pass // in a non-zero iter number to resume training for a pre-trained net. virtual void Solve(const char* resume_file = NULL); inline void Solve(const string resume_file) { Solve(resume_file.c_str()); } woid Step(int_iters);</pre>
60 61 62 63 64 65 65 65 65 65 65	<pre>// The Restore method simply dispatches to one of the // RestoreSolverStateFrom protected methods. You should implement these // methods to restore the state from the appropriate snapshot type. void Restore(const char* resume_file); // The Solver::Snapshot function implements the basic snapshotting utility // that stores the learned net. You should implement the SnapshotSolverState() // function that produces a SolverState protocol buffer that needs to be // written to disk together with the learned net. void Snapshot();</pre>

Trains a Net by running it forward / backward, updating weights

Handles snapshotting, restoring from snapshots

Caffe: Solver

Trains a Net by running it forward / backward, updating weights

Handles snapshotting, restoring from snapshots

Subclasses implement , different update rules

10 11 12	<pre>template <typename dtype=""> class Solver { public:</typename></pre>					
55	11	The main entry of the solver function. In default, iter will be zero. Pass				
56	// in a non-zero iter number to resume training for a pre-trained net.					
57	virtual void Solve(const char* resume_file = NULL);					
58	<pre>inline void Solve(const string resume_file) { Solve(resume_file.c_str()); }</pre>					
9	<pre>void Step(int iters);</pre>					
	// The Restore method simply dispatches to one of the					
11	<pre>// RestoreSolverStateFrom protected methods. You should implement these</pre>					
32	// methods to restore the state from the appropriate snapshot type.					
3	<pre>void Restore(const char* resume_file);</pre>					
-4	<pre>// The Solver::Snapshot function implements the basic snapshotting utility</pre>					
15	<pre>// that stores the learned net. You should implement the SnapshotSolverState()</pre>					
0	<pre>// Function that produces a SolverState protocol buffer that needs to be</pre>					
	// written to disk together with the learned net.					
		Subburg()				
	15	template <typename dtype=""></typename>				
	16	<pre>class SGDSolver : public Solver<dtype> {</dtype></pre>				
	83	template <typename dtype=""></typename>				
	84	<pre>class RMSPropSolver : public SGDSolver<dtype> {</dtype></pre>				
1	130	template <typename dtype=""></typename>				
	131	class AdamSolver : public SGDSolvercDtypes /				

https://github.com/BVLC/caffe/blob/master/include/caffe/sgd_solvers.hpp

Overview

	Caffe	Torch	Theano	TensorFlow
Language	C++, Python	Lua	Python	Python
Pretrained	Yes ++	Yes ++	Yes (Lasagne)	Inception
Multi-GPU: Data parallel	Yes	Yes cunn.DataParallelTable	Yes platoon	Yes
Multi-GPU: Model parallel	No	Yes fbcunn.ModelParallel	Experimental	Yes (best)
Readable source code	Yes (C++)	Yes (Lua)	No	No
Good at RNN	No	Mediocre	Yes	Yes (best)

