
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 1

Lectures 7 and 8:
Convolutional Neural Networks

and
Spatial Localization and Detection

Thursday February 16, 2017

comp150dl

Announcements!

- HW #2 due next Friday Feb 24

- Read AlexNet paper for next class

- Post paper summaries and discussion questions to class blog by Mon Feb
20 11:59pm

- These are easy points. Don’t miss them.

- Final project teams will be posted to webpage this weekend.

2

comp150dl

Python/Numpy of the Day

- enumerate(<iterable object>)

- returns iterator not generator, but use case
behavior is similar

- no ‘yeild’

- 3

for ind, thing in enumerate(list_of_things):
 print ‘index: {} item: {}’.format(ind, thing)

output:
index: 0 item: thing0
index: 1 item: thing1
…

- np.full(shape, fill_val) and
np.full_like(ex_array, fill_val)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 4

Mini-batch SGD
Loop:
1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 5

Image credits: Alec Radford

Parameter
updates

We covered:
sgd,
momentum,
nag,
adagrad,
rmsprop,
adam (not in this vis),

we did not cover adadelta

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 6

Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous
look

cat
score

X

X

X

Dropout

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 7

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 8

Convolutional Neural Networks

comp150dl

Review from linear filters

9

Original

Sharpening filter
- Accentuates differences with local
average

Source: D. Lowe

Sobel filter
- Vertical Edges

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 10

32

32

3

Convolution Layer
32x32x3 image

width

height

depth

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 11

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

comp150dl

Convolution Layer - the convolution is in Fourier space

Credit: European Southern Observatory

www.doitpoms.ac.uk 12

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 13

32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Filters always extend the full
depth of the input volume

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 14

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

1 number:
the result of taking a dot product between the
filter and a small 5x5x3 chunk of the image
(i.e. 5*5*3 = 75-dimensional dot product + bias)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 15

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 16

32

32

3

Convolution Layer

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation maps

1

28

28

consider a second, green filter

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 17

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 18

Preview: ConvNet is a sequence of Convolution Layers, interspersed with
activation functions

32

32

3

28

28

6

CONV,
ReLU
e.g. 6
5x5x3
filters

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 19

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with
activation functions

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 20

Preview [From recent Yann
LeCun slides]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 21

Activation Maps
from Filters at
different layers
of AlexNet:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 22

A closer look at spatial dimensions:

32

32

3

32x32x3 image
5x5x3 filter

convolve (slide) over all
spatial locations

activation map

1

28

28

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 23

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 24

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 25

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 26

7x7 input (spatially)
assume 3x3 filter

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 27

7x7 input (spatially)
assume 3x3 filter

=> 5x5 output

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 28

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 29

7x7 input (spatially)
assume 3x3 filter
applied with stride 2

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 30

7x7 input (spatially)
assume 3x3 filter
applied with stride 2
=> 3x3 output!

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 31

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 32

7x7 input (spatially)
assume 3x3 filter
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!
cannot apply 3x3 filter on
7x7 input with stride 3.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 33

N

N F

F

Output size:
(N - F) / stride + 1

e.g. N = 7, F = 3:
stride 1 => (7 - 3)/1 + 1 = 5
stride 2 => (7 - 3)/2 + 1 = 3
stride 3 => (7 - 3)/3 + 1 = 2.33 :\

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 34

In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

(recall:)
(N - F) / stride + 1

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 35

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

0 0 0 0 0 0

0

0

0

0

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 36

In practice: Common to zero pad the border

e.g. input 7x7
3x3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!
in general, common to see CONV layers with
stride 1, filters of size FxF, and zero-padding with
(F-1)/2. (will preserve size spatially)
e.g. F = 3 => zero pad with 1
 F = 5 => zero pad with 2
 F = 7 => zero pad with 3

0 0 0 0 0 0

0

0

0

0

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 37

Remember back to…
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially!
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV,
ReLU
e.g. 6
5x5x3
filters 28

28

6

CONV,
ReLU
e.g. 10
5x5x6
filters

CONV,
ReLU

….

10

24

24

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 38

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size: ?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 39

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Output volume size:
(32+2*2-5)/1+1 = 32 spatially, so
32x32x10

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 40

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 41

Examples time:

Input volume: 32x32x3
10 5x5 filters with stride 1, pad 2

Number of parameters in this layer?
each filter has 5*5*3 + 1 = 76 params (+1 for bias)

=> 76*10 = 760

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 42

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 43

Common settings:

K = (powers of 2, e.g. 32, 64, 128, 512)
- F = 3, S = 1, P = 1
- F = 5, S = 1, P = 2
- F = 5, S = 2, P = ? (whatever fits)
- F = 1, S = 1, P = 0

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 44

(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV
with 32 filters

32
56

56
(each filter has size
1x1x64, and performs a
64-dimensional dot
product)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 45

Example: CONV
layer in Torch

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 46

Example: CONV
layer in Caffe

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 47

Pooling and
FC Layers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 48

Pooling layer
- makes the representations smaller and more manageable
- operates over each activation map independently:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 49

1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters
and stride 2 6 8

3 4

MAX POOLING

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 50

Summary of Pooling Layer

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 51

Common settings:

F = 2, S = 2
F = 3, S = 2

Summary of Pooling Layer

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 52

Fully Connected Layer (FC layer)
- Contains neurons that connect to the entire input volume, as in ordinary Neural

Networks

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 53

http://
cs.stanford.edu/
people/karpathy/
convnetjs/demo/
cifar10.html

ConvNetJS
demo:
training on
CIFAR-10

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 54

Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1
Subsampling (Pooling) layers were 2x2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 55

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: (227-11)/4+1 = 55

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 56

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]

Q: What is the total number of parameters in this layer?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 57

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images

First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: (11*11*3)*96 = 35K

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 58

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2

Q: what is the output volume size? Hint: (55-3)/2+1 = 27

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 59

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96

Q: what is the number of parameters in this layer?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 60

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96

Second layer (POOL1): 3x3 filters applied at stride 2
Output volume: 27x27x96
Parameters: 0!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 61

Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
After POOL1: 27x27x96
...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 62

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 63

Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture:
[227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0
[27x27x96] MAX POOL1: 3x3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3x3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3x3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:
- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate 1e-2, reduced by 10
manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2% -> 15.4%

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 64

Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1
and 2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013
->
7.3% top 5 error

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 65

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 66

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 67

INPUT: [224x224x3] memory: 224*224*3=150K params: 0
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*3)*64 = 1,728
CONV3-64: [224x224x64] memory: 224*224*64=3.2M params: (3*3*64)*64 = 36,864
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*64)*128 = 73,728
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: (3*3*128)*128 = 147,456
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*128)*256 = 294,912
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
CONV3-256: [56x56x256] memory: 56*56*256=800K params: (3*3*256)*256 = 589,824
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*256)*512 = 1,179,648
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
CONV3-512: [28x28x512] memory: 28*28*512=400K params: (3*3*512)*512 = 2,359,296
POOL2: [14x14x512] memory: 14*14*512=100K params: 0
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: 7*7*512*4096 = 102,760,448
FC: [1x1x4096] memory: 4096 params: 4096*4096 = 16,777,216
FC: [1x1x1000] memory: 1000 params: 4096*1000 = 4,096,000

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd)
TOTAL params: 138M parameters

Note:

Most memory is in
early CONV

Most params are
in late FC

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 68

Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 69

Case Study: GoogLeNet

Fun features:

- Only 5 million params!
(Removes FC layers
completely)

Compared to AlexNet:
- 12X less params
- 2x more compute
- 6.67% (vs. 16.4%)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 70

Slide from Kaiming He’s ICCV 2015 presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

https://www.youtube.com/watch?v=1PGLj-uKT1w

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 71

(slide from Kaiming He’s ICCV 2015 presentation)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 72

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 73

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error)

(slide from Kaiming He’s ICCV 2015 presentation)

2-3 weeks of training
on 8 GPU machine

at runtime: faster
than a VGGNet!
(even though it has
8x more layers)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 74

Case Study:
ResNet
[He et al., 2015]

224x224x3

spatial dimension
only 56x56!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 75

Case Study: ResNet [He et al., 2015]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 76

Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used
- ResNet architecture can be thought of as large ensemble of

relatively shallow networks. [Veit et al. NIPS 2016]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 77

Intro to CNNs Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX
 where N is usually up to ~5, M is large, 0 <= K <= 2.

- but recent advances such as ResNet/GoogLeNet
challenge this paradigm

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 78

Results from Faster R-CNN, Ren et al 2015

Spatial Localization and Detection

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 79

Classification Classification
+ Localization

Computer Vision Tasks

CAT CAT CAT, DOG, DUCK

Object Detection Instance
Segmentation

CAT, DOG, DUCK

Single object Multiple objects

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 80

Classification Classification
+ Localization

Computer Vision Tasks

Object Detection Instance
Segmentation

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 81

Classification + Localization: Task
Classification: C classes
 Input: Image
 Output: Class label
 Evaluation metric: Accuracy

Localization:
 Input: Image
 Output: Box in the image (x, y, w, h)
 Evaluation metric: Intersection over Union

Classification + Localization: Do both

CAT

(x, y, w, h)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 82

Localization as Regression

Input: image

Output:  
Box coordinates
(4 numbers)

Neural Net

Correct output:  
box coordinates
(4 numbers)

Loss:
L2 distance

Only one object,  
simpler than detection

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 83

Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Softmax loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 84

Simple Recipe for Classification + Localization
Step 2: Attach new fully-connected “regression head” to the network

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

Box coordinates

“Classification head”

“Regression head”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 85

Simple Recipe for Classification + Localization
Step 3: Train the regression head only with SGD and L2 loss

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

Box coordinates

L2 loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 86

Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

Box coordinates

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 87

Per-class vs class agnostic regression

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

Box coordinates

Assume classification
over C classes: Classification head:

C numbers  
(one per class)

Class agnostic: 
4 numbers
(one box)
Class specific: 
C x 4 numbers
(one box per class)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 88

Where to attach the regression head?

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Softmax loss

After conv layers:
Overfeat, VGG

After last FC layer:
DeepPose, R-CNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 89

Aside: Localizing multiple objects
Want to localize exactly K
objects in each image  

(e.g. whole cat, cat head,
cat left ear, cat right ear for
K=4)

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores

Fully-connected
layers

Box coordinates

K x 4 numbers
(one box per object)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 90

Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 1024 Boxes: 
1000 x 4

4096 4096 Class scores:
1000

Softmax 
loss

Euclidean
loss

Winner of ILSVRC 2013
localization challenge

FC
FC FC

FC FC

FC

Sermanet et al, “Integrated Recognition, Localization and
Detection using Convolutional Networks”, ICLR 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 91

Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Larger image: 

3 x 257 x 257

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 92

Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Larger image: 

3 x 257 x 257

0.5

Classification scores:
P(cat)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 93

Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

Classification scores:
P(cat)

Larger image: 
3 x 257 x 257

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 94

Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6

Classification scores:
P(cat)

Larger image: 
3 x 257 x 257

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 95

Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores:
P(cat)

Larger image: 
3 x 257 x 257

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 96

Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores:
P(cat)

Larger image: 
3 x 257 x 257

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 97

Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Classification score:

P(cat)
Larger image: 
3 x 257 x 257

Greedily merge boxes and
scores (details in paper)

0.8

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 98

Sliding Window: Overfeat
In practice use many sliding window
locations and multiple scales

Window positions + score maps Box regression outputs Final Predictions

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 99

Efficient Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 1024 Boxes: 
1000 x 4

4096 4096 Class scores:
1000

FC

FC
FC FC

FC FC

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 100

Efficient Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 x 1 x 1 1024 x 1 x 1

5 x 5
conv

5 x 5
conv

1 x 1 conv

4096 x 1 x 1 1024 x 1 x 1

Box coordinates: 
(4 x 1000) x 1 x 1

Class scores: 
1000 x 1 x 1

1 x 1 conv

1 x 1 conv 1 x 1 conv

Efficient sliding window by converting fully-
connected layers into convolutions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 101

Summary: Sliding Window

- Run classification + regression network at multiple locations on a
high-resolution image

- Convert fully-connected layers into convolutional layers for
efficient computation

- Combine classifier and  
regressor predictions across all scales for final prediction

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 102

ImageNet Classification + Localization (1 object per image)

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression
with box merging

VGG: Same as Overfeat, but fewer scales
and locations; simpler method, gains all due
to deeper features

ResNet: Different localization method (RPN)
and much deeper features

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 103

Classification

Computer Vision Tasks

Object Detection Instance
Segmentation

Classification
+ Localization

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 104

Classification Classification
+ Localization

Computer Vision Tasks
Instance
SegmentationObject Detection

comp150dl

Detection Metrics - COCO Challenge

105

comp150dl

Detection Metrics

106

• AP is averaged over multiple IoU
values between 0.5 and 0.95.

Challenges Score: AP
• More comprehensive metric than the

traditional AP at a fixed IoU value (0.5
for PASCAL).

comp150dl

• AP is averaged over instance
size:

• small (A < 32 x 32)

• medium (32x 32 < A < 96 x 96)

• large (A > 96 x 96)

Detection Metrics

107

A < 32x32

32x32 < A < 96x96

A > 96x96Other Scores: Size AP

comp150dl

Detection Metrics

108

Other Scores: AR

• Measures the maximum recall over a fixed number of detections allowed in
the image of 1, 10, 100.

• AR is averaged over small (A < 32 x 32), medium (32x 32 < A < 96 x 96) and large (A
> 96 x 96) instances of objects.

comp150dl

Detection Ambiguity

109

IoU = 0.5 IoU = 0.7 IoU = 0.95

Which one is better?

Detection BBoxGround-Truth BBox

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 110

Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)
CAT, (x, y, w, h)
DUCK (x, y, w, h)  

= 16 numbers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 111

Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)  

= 8 numbers

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 112

Detection as Regression?

CAT, (x, y, w, h)
CAT, (x, y, w, h)
….
CAT (x, y, w, h)  

= many numbers

Need variable sized outputs

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 113

Detection as Classification

CAT? NO

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 114

Detection as Classification

CAT? YES!

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 115

Detection as Classification

CAT? NO

DOG? NO

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 116

Detection as Classification

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 117

Detection as Classification

Problem: Need to test many positions and scales,  
and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 118

Region Proposals
● Find “blobby” image regions that are likely to contain objects
● “Class-agnostic” object detector
● Look for “blob-like” regions

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 119

Region Proposals: Selective Search
Bottom-up segmentation, merging regions at multiple scales

Convert
regions
to boxes

 Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 120

Region Proposals: Many other choices

 Hosang et al, “What makes for effective detection proposals?”, PAMI 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 121

Putting it together: R-CNN

Girschick et al, “Rich feature hierarchies for
accurate object detection and semantic
segmentation”, CVPR 2014 
 
Slide credit: Ross Girschick

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 122

R-CNN Training
Step 1: Train (or download) a classification model for ImageNet (AlexNet)

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores 
1000 classes

Softmax loss

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 123

R-CNN Training
Step 2: Fine-tune model for detection
- Instead of 1000 ImageNet classes, want PASCAL 20 object classes +

background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

Image

Convolution
 and Pooling

Final conv
feature map

Fully-connected
layers

Class scores: 
21 classes

Softmax loss

Re-initialize this layer:  
was 4096 x 1000,  
now will be 4096 x 21

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 124

R-CNN Training
Step 3: Extract features

- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5

features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!

Image

Convolution
 and Pooling

pool5 features

Region Proposals Crop + Warp Forward pass Save to disk

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 125

R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Positive samples for cat SVM Negative samples for cat SVM

Training image regions

Cached region features

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 126

R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Training image regions

Cached region features

Negative samples for dog SVM Positive samples for dog SVM

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 127

R-CNN Training
Step 5 (bbox regression): For each class, train a linear regression model to map from
cached features to offsets to GT boxes to make up for “slightly wrong” proposals

Training image regions

Cached region features

Regression targets
(dx, dy, dw, dh)
Normalized coordinates

(0, 0, 0, 0)  
Proposal is good

(.25, 0, 0, 0)  
Proposal too  
far to left

(0, 0, -0.125, 0) 
Proposal too  
wide

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 128

Object Detection: Datasets

PASCAL
VOC  
(2010)

ImageNet
Detection
(ILSVRC 2014)

COCO 
(2014)

Number of
classes 20 200 80

Number of
images (train +
val)

~20k ~470k ~120k

Mean objects per
image 2.4 1.1 7.2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 129

R-CNN Problems

1. Slow at test-time: need to run full forward pass of
CNN for each region proposal 

2. SVMs and regressors are post-hoc: CNN features
not updated in response to SVMs and regressors 

3. Complex multistage training pipeline

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 130

R-CNN Problem #1:  
Slow at test-time due to
independent forward
passes of the CNN

Solution:  
Share computation
of convolutional
layers between
proposals for an
image

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 131

R-CNN Problem #2:  
Post-hoc training: CNN not
updated in response to final
classifiers and regressors

R-CNN Problem #3:
Complex training pipeline

Solution:
Just train the whole system
end-to-end all at once!

Slide credit: Ross Girschick

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 132

Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600 
with region
proposal

Convolution
 and Pooling

Hi-res conv features:
C x H x W 
with region proposal

Fully-connected
layers

Problem: Fully-connected
layers expect low-res conv
features: C x h x w

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 133

Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600 
with region
proposal

Convolution
 and Pooling

Hi-res conv features:
C x H x W 
with region proposal

Fully-connected
layers

Project region proposal
onto conv feature map

Problem: Fully-connected
layers expect low-res conv
features: C x h x w

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 134

Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600 
with region
proposal

Convolution
 and Pooling

Hi-res conv features:
C x H x W 
with region proposal

Fully-connected
layers

Problem: Fully-connected
layers expect low-res conv
features: C x h x w

Divide projected
region into h x w grid

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 135

Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600 
with region
proposal

Convolution
 and Pooling

Hi-res conv features:
C x H x W 
with region proposal

Fully-connected
layers

Max-pool within
each grid cell

RoI conv features:
C x h x w  
for region proposal

Fully-connected layers expect
low-res conv features:  
C x h x w

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 136

Fast R-CNN: Region of Interest Pooling

Hi-res input image:
3 x 800 x 600 
with region
proposal

Convolution
 and Pooling

Hi-res conv features:
C x H x W 
with region proposal

Fully-connected
layers

Can back propagate
similar to max pooling

RoI conv features:
C x h x w  
for region proposal

Fully-connected layers expect
low-res conv features:  
C x h x w

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 137

Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 138

Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 139

Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER!

Better!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 140

Fast R-CNN Problem:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image
with Selective Search 50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 141

Fast R-CNN Problem Solution:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image
with Selective Search 50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals  
Just make the CNN do region proposals too!

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 142

Faster R-CNN: Insert a Region Proposal
Network (RPN) after the last
convolutional layer

RPN trained to produce region
proposals directly; no need for
external region proposals!

After RPN, use RoI Pooling and an
upstream classifier and bbox
regressor just like Fast R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks”, NIPS 2015 
 
Slide credit: Ross Girschick

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 143

Faster R-CNN: Region Proposal Network
Slide a small window on the feature map

Build a small network for:
• classifying object or not-object, and
• regressing bbox locations

Position of the sliding window provides localization
information with reference to the image

Box regression provides finer localization information
with reference to this sliding window

1 x 1 conv

1 x 1 conv1 x 1 conv

Slide credit: Kaiming He

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 144

Faster R-CNN: Region Proposal Network
Use N anchor boxes at each location

Anchors are translation invariant: use the
same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each
(regressed) anchor shows an object

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 145

Faster R-CNN: Results

R-CNN Fast R-CNN Faster R-CNN

Test time per
image  
(with proposals)

50 seconds 2 seconds 0.2 seconds

(Speedup) 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 146

Object Detection State-of-the-art:  
ResNet 101 + Faster R-CNN + some extras

He et. al, “Deep Residual Learning for Image Recognition”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 147

YOLO: You Only Look Once
Detection as Regression
Divide image into S x S grid

Within each grid cell predict:
 B Boxes: 4 coordinates +
confidence
 Class scores: C numbers

Regression from image to  
7 x 7 x (5 * B + C) tensor

Direct prediction using a CNN

Redmon et al, “You Only Look Once:  
Unified, Real-Time Object Detection”, arXiv 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl 148

Object Detection code links:
R-CNN
(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn
Probably don’t use this; too slow

Fast R-CNN  
(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn

Faster R-CNN
(Caffe + MATLAB): https://github.com/ShaoqingRen/faster_rcnn
(Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn

YOLO
http://pjreddie.com/darknet/yolo/
(To be presented in class)

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

