Lectures 7 and 8: Convolutional Neural Networks and Spatial Localization and Detection

Thursday February 16, 2017

Announcements!

- HW \#2 due next Friday Feb 24
- Read AlexNet paper for next class
- Post paper summaries and discussion questions to class blog by Mon Feb 20 11:59pm
- These are easy points. Don't miss them.
- Final project teams will be posted to webpage this weekend.

Python/Numpy of the Day

- enumerate(<iterable object>)

- returns iterator not generator, but use case behavior is similar
- no 'yeild'

```
for ind, thing in enumerate(list_of_things):
    print 'index: {} item: {}'.format(ind, thing)
output:
index: 0 item: thing0
index: 1 item: thing1
```

- np.full(shape, fill_val) and
np.full_like(ex_array, fill_val)
comp 150al (3)Tufts

Mini-batch SGD

Loop:

1. Sample a batch of data
2. Forward prop it through the graph, get loss
3. Backprop to calculate the gradients
4. Update the parameters using the gradient

Parameter updates

Dropout

Forces the network to have a redundant representation.

Convolutional Neural Networks

[LeNet-5, LeCun 1980]

Convolutional Neural Networks

Review from linear filters

Sharpening filter

- Accentuates differences with local average

0	0	0				
0	2	0				
0	0	0	$=\frac{1}{9}$	1	1	1
:---	:---	:---				
1	1	1				
1	1	1				

Original

1	0	-1
2	0	-2
1	0	-1

Sobel filter

- Vertical Edges

Convolution Layer

Convolution Layer

$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer - the convolution is in Fourier space

Let \mathcal{F} denote the Fourier transform operator,
so $\mathcal{F}\{f\}$ and $\mathcal{F}\{g\}$ are the Fourier transforms of f and g, respectively.
Then

$$
\mathcal{F}\{f * g\}=\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}
$$

where - denotes point-wise multiplication. It also works the other way around:

$$
\mathcal{F}\{f \cdot g\}=\mathcal{F}\{f\} * \mathcal{F}\{g\}
$$

By applying the inverse Fourier transform \mathcal{F}^{-1}, we can write:

$$
f * g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} \cdot \mathcal{F}\{g\}\}
$$

(a)

(c)

(d)
(b)

(e)

Credit: European Southern Observatory
and:

$$
f \cdot g=\mathcal{F}^{-1}\{\mathcal{F}\{f\} * \mathcal{F}\{g\}\}
$$

Convolution Layer

Filters always extend the full depth of the input volume
$32 \times 32 \times 3$ image

$5 \times 5 \times 3$ filter

Convolve the filter with the image i.e. "slide over the image spatially, computing dot products"

Convolution Layer

Convolution Layer

activation map

Convolution Layer

consider a second, green filter

For example, if we had 65×5 filters, we'll get 6 separate activation maps: activation maps

We stack these up to get a "new image" of size $28 \times 28 \times 6$!

Preview: ConvNet is a sequence of Convolution Layers, interspersed with activation functions

Preview: ConvNet is a sequence of Convolutional Layers, interspersed with activation functions

Feature visualization of convolutional net trained on ImageNet from [Zeiler \& Fergus 2013]

A closer look at spatial dimensions:

activation map

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume $3 x 3$ filter

A closer look at spatial dimensions:

7x7 input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter

A closer look at spatial dimensions:

7

$7 x 7$ input (spatially) assume $3 x 3$ filter

=> 5×5 output
7

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter applied with stride 2

A closer look at spatial dimensions:

7

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 2

7

A closer look at spatial dimensions:

7

7×7 input (spatially) assume $3 x 3$ filter applied with stride 2 => $3 x 3$ output!

7

A closer look at spatial dimensions:

7×7 input (spatially) assume $3 x 3$ filter applied with stride 3 ?

A closer look at spatial dimensions:

$7 x 7$ input (spatially) assume 3×3 filter applied with stride 3 ?

doesn't fit!
cannot apply 3×3 filter on 7×7 input with stride 3.

Output size:
 (N - F) / stride + 1

N

$$
\begin{aligned}
& \text { e.g. } N=7, F=3: \\
& \text { stride } 1=>(7-3) / 1+1=5 \\
& \text { stride } 2=>(7-3) / 2+1=3 \\
& \text { stride } 3=>(7-3) / 3+1=2.33: 1
\end{aligned}
$$

In practice: Common to zero pad the border

| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| | | | | | | | | |
| 0 | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

e.g. input 7×7 3×3 filter, applied with stride 1 pad with 1 pixel border => what is the output?

(recall:)

$(\mathrm{N}-\mathrm{F}) /$ stride +1

In practice: Common to zero pad the border

| 0 | 0 | 0 | 0 | 0 | 0 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| 0 | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |
| | | | | | | | | |

e.g. input 7×7

3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?
7×7 output!

In practice: Common to zero pad the border

e.g. input 7×7
3×3 filter, applied with stride 1
pad with 1 pixel border => what is the output?

7x7 output!

in general, common to see CONV layers with stride 1, filters of size FxF, and zero-padding with (F-1)/2. (will preserve size spatially) e.g. $F=3=>$ zero pad with 1

F = 5 => zero pad with 2
$\mathrm{F}=7=>$ zero pad with 3

Remember back to...

E.g. 32×32 input convolved repeatedly with 5×5 filters shrinks volumes spatially! (32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn't work well.

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Output volume size:?

Examples time:

Input volume: 32x32x3
 105×5 filters with stride 1, pad 2

Output volume size: $(32+2 * 2-5) / 1+1=32$ spatially, so 32x32x10

Examples time:

Input volume: 32x32x3 105×5 filters with stride 1 , pad 2

Number of parameters in this layer?

Examples time:

Input volume: 32x32x3
 105×5 filters with stride 1, pad 2

Number of parameters in this layer? each filter has $5 * 5 * 3+1=76$ params (+1 for bias) => $76 * 10=760$

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.

Common settings:

Summary. To summarize, the Conv Layer:

$$
K=\text { (powers of 2, e.g. 32, 64, 128, 512) }
$$

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- $\quad F=3, S=1, P=1$
- Requires four hyperparameters:
- $\quad F=5, S=1, P=2$
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P.
- Produces a volume of size $\mathrm{W}_{2} \times \mathrm{H}_{2} \times \mathrm{D}_{2}$ where:
- $W_{2}=\left(W_{1}-F+2 P\right) / S+1$
- $H_{2}=\left(H_{1}-F+2 P\right) / S+1$ (i.e. width and height are computed equally by symmetry)
- $D_{2}=K$
- With parameter sharing, it introduces $F \cdot F \cdot D_{1}$ weights per filter, for a total of $\left(F \cdot F \cdot D_{1}\right) \cdot K$ weights and K biases.
- In the output volume, the d-th depth slice (of size $W_{2} \times H_{2}$) is the result of performing a valid convolution of the d-th filter over the input volume with a stride of S, and then offset by d-th bias.
(btw, 1×1 convolution layers make perfect sense)

Example: CONV layer in Torch

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P

SpatialConvolution

```
module = nn.SpatialComvolution(nInputPlane, nOutputPlane, kW, kH, [dw], [dH], [padW], [padH])
```

Applies a 2 D conwolution ower an input image composed of several input planes. The input tensor in forward(input) is expected to be a 3D tensor (ninputplane x height \times width).

The parameters are the following:

- nInputplane : The number of expected input planes in the image given into forward () .
- noutputplane : The number of output planes the convolution layer will produce.
- kW : The kernel width of the comvolution
- kH: The kernel height of the corrvolution
- dw : The step of the convolution in the width dimension. Default is 1 .
- dH : The step of the conwolution in the height dimension. Default is 1 .
- padiw : The additional zeros added per width to the input planes. Default is 0 , a good number is (kW-1)/2 .
* padn : The additional zeros added per height to the input planes. Default is pade , a good number is (k)/-1)/2 .

Note that depending of the size of your kernel, several (of the last) columns or rows of the input image might be lost. It is up to the user to add proper padding in images.

If the input image is a 3 D tensor ninputPlane x height x width, the output image size will be noutputplane x oheight x owidth where

```
Owidth = floor((width + 2"padW = kW) / dN + 1)
oheight = floor((height + 2'padH = kH) / dH + 1)
```


Example: CONV
 layer in Caffe

Summary. To summarize, the Conv Layer:

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires four hyperparameters:
- Number of filters K,
- their spatial extent F,
- the stride S,
- the amount of zero padding P

```
layer {
```

layer {
name: "conv1*
name: "conv1*
type: "Convolution"
type: "Convolution"
botton: "data"
botton: "data"
top: "conv1"
top: "conv1"
\# learning rate and decay multipliers for the filters
\# learning rate and decay multipliers for the filters
paran { lr_mult: 1 decay_mult: 1 }
paran { lr_mult: 1 decay_mult: 1 }
\# learning rate and decay multipliers for the biases
\# learning rate and decay multipliers for the biases
paran { lr_mult: 2 decay_mult: 0 }
paran { lr_mult: 2 decay_mult: 0 }
convolution_paran {
convolution_paran {
nun_output}=96 \# learn 96 filters
nun_output}=96 \# learn 96 filters
kernel_size: 11 \# each filter is 11x11
kernel_size: 11 \# each filter is 11x11
stride: 4 \# step 4 pixels betveen each filter application
stride: 4 \# step 4 pixels betveen each filter application
weight_filler {
weight_filler {
type: "gaussian" \# initialize the filters fron a Gaussian
type: "gaussian" \# initialize the filters fron a Gaussian
std: 0.01 \# distribution vith stdev 0.01 (default mean: 0)
std: 0.01 \# distribution vith stdev 0.01 (default mean: 0)
}
}
bias_filler {
bias_filler {
type: "constant" \# initialize the biases to zero (0)
type: "constant" \# initialize the biases to zero (0)
value: 0
value: 0
}
}
}
}
}

```
}
```


Pooling layer

- makes the representations smaller and more manageable
- operates over each activation map independently:

MAX POOLING

Single depth slice

Summary of Pooling Layer

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires three hyperparameters:
- their spatial extent \boldsymbol{F},
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Summary of Pooling Layer

- Accepts a volume of size $W_{1} \times H_{1} \times D_{1}$
- Requires three hyperparameters:
- their spatial extent F,
- the stride S,
- Produces a volume of size $W_{2} \times H_{2} \times D_{2}$ where:
- $W_{2}=\left(W_{1}-F\right) / S+1$
- $H_{2}=\left(H_{1}-F\right) / S+1$
- $D_{2}=D_{1}$
- Introduces zero parameters since it computes a fixed function of the input
- Note that it is not common to use zero-padding for Pooling layers

Fully Connected Layer (FC layer)

- Contains neurons that connect to the entire input volume, as in ordinary Neural Networks

ConvNetJS demo:
 training on CIFAR-10

http://
cs.stanford.edu/ people/karpathy/ convnetis/demo/ cifar10.html

* Original slides borrowed from And and Li Fei-Fei, Stanford cs231n
input $(32 \times 32 \times 3)$
max activatonc 0.5
$\min :=0.32363$

Activations: max grabert max grasent
$0.01513, \min \cdot 0.01463$

out depth 3)):

```
layer_defs = [];
```

layer_defs = [];
layer_defs.push!(type:'input', out_sx:32, out_sy:32,

```
layer_defs.push!(type:'input', out_sx:32, out_sy:32,
```

layer_defs.push[(type:'conv', sx:5, filters:16, stride:1, pad activation:'relu'));
layer_defs. push!(type:'pool', sx:2, stride:2):
nhanno notwind

Backorop time per example:
61 ms
Classification loss: 2.27026
L2 Weight decay loss: 0.00084 Training accuracy: 0.15
Valdation accuracy. -1
Examples seen: 193
Learning rate:
0.01
change
Momentum:
0.9

change

Batch size:

change

Weight decay:
0.0001
save network snapshot as JSON

Example predictions on Test set
test accuracy based on last 200 test mages: 0.25 F=Thip

Case Study: LeNet-5

[LeCun et al., 1998]

Conv filters were 5×5, applied at stride 1
Subsampling (Pooling) layers were 2×2 applied at stride 2
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Q: what is the output volume size? Hint: $(227-11) / 4+1=55$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Q: What is the total number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
First layer (CONV1): 96 11x11 filters applied at stride 4
=>
Output volume [55x55x96]
Parameters: $\left(11^{*} 11^{*} 3\right)^{*} 96=35 \mathrm{~K}$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images
After CONV1: 55x55x96
Second layer (POOL1): 3×3 filters applied at stride 2
Q: what is the output volume size? Hint: $(55-3) / 2+1=27$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3×3 filters applied at stride 2 Output volume: $27 \times 27 \times 96$

Q: what is the number of parameters in this layer?

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96

Second layer (POOL1): 3×3 filters applied at stride 2 Output volume: 27x27x96
Parameters: 0!

Case Study: AlexNet

[Krizhevsky et al. 2012]

Input: 227x227x3 images After CONV1: 55x55x96 After POOL1: $27 \times 27 \times 96$

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT

[$55 \times 55 \times 96$] CONV1: 9611×11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2 [13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13×13×384] CONV3: 3843×3 filters at stride 1, pad 1
[13x13x384] CONV4: 3843×3 filters at stride 1, pad 1
[13x13x256] CONV5: 2563×3 filters at stride 1, pad 1
[6x6x256] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Case Study: AlexNet

[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: [227x227x3] INPUT
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 [27x27x96] MAX POOL1: 3×3 filters at stride 2
[27x27x96] NORM1: Normalization layer
[27x27x256] CONV2: 2565×5 filters at stride 1, pad 2
[13x13x256] MAX POOL2: 3×3 filters at stride 2
[13x13x256] NORM2: Normalization layer
[13x13x384] CONV3: 3843×3 filters at stride 1, pad 1
[13x13x384] CONV4: 3843×3 filters at stride 1, pad 1
[13x13x256] CONV5: 2563×3 filters at stride 1, pad 1
[$6 \times 6 \times 256$] MAX POOL3: 3×3 filters at stride 2
[4096] FC6: 4096 neurons
[4096] FC7: 4096 neurons
[1000] FC8: 1000 neurons (class scores)

Details/Retrospectives:

- first use of ReLU
- used Norm layers (not common anymore)
- heavy data augmentation
- dropout 0.5
- batch size 128
- SGD Momentum 0.9
- Learning rate $1 \mathrm{e}-2$, reduced by 10 manually when val accuracy plateaus
- L2 weight decay 5e-4
- 7 CNN ensemble: 18.2\% -> 15.4\%

Case Study: VGGNet

[Simonyan and Zisserman, 2014]
Only $3 x 3$ CONV stride 1, pad 1 and 2×2 MAX POOL stride 2

best model

11.2\% top 5 error in ILSVRC 2013
 7.3\% top 5 error

ConvNet Configuration					
A	A-LRN	B	C	D	E
I1 weight layers	11 weight layers	$\begin{gathered} 13 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{gathered} 16 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$	$\begin{aligned} & 16 \text { weight } \\ & \text { layers } \end{aligned}$	$\begin{gathered} 19 \text { weight } \\ \text { layers } \\ \hline \end{gathered}$
input ($224 \times 224 \mathrm{RGB}$ imag)					
conv3-64	$\begin{gathered} \text { Conv3-64 } \\ \text { LRN } \end{gathered}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { comv3-64 } \\ & \text { com } 3-64 \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$
maxpool					
comv3-128	conv3-128	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \operatorname{conv} 3-128 \end{aligned}$	$\begin{aligned} & \text { comv3-128 } \\ & \text { comv3-128 } \end{aligned}$
maxpool					
$\begin{aligned} & \text { comv3-256 } \\ & \text { comv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv } 2.25 \\ & \hline \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \operatorname{conv} 3-256 \\ & \operatorname{conv} 3-256 \\ & \text { conv3-256 } \end{aligned}$	comv3-256 comv3-256 comv3-256 conv3-256
maxpool					
$\begin{aligned} & \text { comv3-512 } \\ & \text { comv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv1-512	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	comv3-512 comv3-512 comv3-512 conv3-512
maxpool					
$\begin{aligned} & \text { comv3-512 } \\ & \text { comv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	com $3-512$ com 3 -512 comv3-512 conv3-512
maxpool					
FC-4096					
FC-4096					
FC-1000					
soft-max					

Table 2: Number of parameters (in millions)

Network	A,A-LRN	B	C	D	E
Number of parameters	133	133	134	138	144

POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: 56*56*256=800K params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14 * 14 * 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7x7x512] memory: $7^{*} 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

ConvNet Contiguration			
B	C	D	
$\begin{gathered} 13 \text { weight } \\ \text { layers } \end{gathered}$	16 weight layers	16 weight layers	19
put (224 $\times 224 \mathrm{RGB}$ imagc			
$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	conv3-64 conv3-64	$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	cc cc
maxpool			
$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \hline \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	cor cor
maxpool			
$\begin{aligned} & \hline \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	cor cor cor
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { comv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	cor cor cos
maxpool			
$\begin{aligned} & \hline \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-5T2 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	cor cor cor
maxpool			
FC-4096			
FC-4096			
FC-1000			
soft-max			

POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: 56*56*256=800K params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56^{*} 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28x256] memory: 28*28*256=200K params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14×14×512] memory: $14^{* 14 * 512=100 K ~ p a r a m s: ~} 0$
CONV3-512: [14×14x512] memory: $14^{*} 14 * 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $(3 * 3 * 512)^{*} 512=2,359,296$
CONV3-512: [14x14x512] memory: $14^{*} 14^{*} 512=100 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [7x7x512] memory: 7*7*512=25K params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7^{*} 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

ConvNet Configuration			
B	C	D	
13 weight layers	$\begin{aligned} & 16 \text { weight } \\ & \text { layers } \end{aligned}$	16 weight layers	19
put (224 $\times 224 \mathrm{RGB}$ imagc			
$\begin{aligned} & \text { conv3-64 } \\ & \text { conv3-64 } \end{aligned}$	conv3-64 conv3-64	conv3-64 conv3-64	cc cc
maxpool			
$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	$\begin{aligned} & \text { conv3-128 } \\ & \text { conv3-128 } \end{aligned}$	cot cor
maxpool			
$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv1-256 } \end{aligned}$	$\begin{aligned} & \text { conv3-256 } \\ & \text { conv3-256 } \\ & \text { conv3-256 } \end{aligned}$	cor cor cor
maxpool			
$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv1-512 } \end{aligned}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	co cof
maxpool			
$\begin{aligned} & \text { conv3-5ा2 } \\ & \text { conv3-512 } \end{aligned}$	$\begin{gathered} \hline \text { conv3-512 } \\ \text { conv3-512 } \\ \text { conv1-512 } \end{gathered}$	$\begin{aligned} & \text { conv3-512 } \\ & \text { conv3-512 } \\ & \text { conv3-512 } \end{aligned}$	col co co
maxpool			
FC-4096			
FC-4096			
FC-1000			
soft-max			

[^0] compisool ©Tufts

Note:

CONV3-64: [224x224x64] memory: $224^{*} 224^{*} 64=3.2 \mathrm{M}$ params: $\left(3^{*} 3^{*} 64\right)^{*} 64=36,864$
POOL2: [112x112x64] memory: 112*112*64=800K params: 0
CONV3-128: [112x112x128] memory: 112*112*128=1.6M params: $\left(3^{*} 3^{*} 64\right)^{*} 128=73,728$
CONV3-128: [112×112x128] memory: $112^{* 112 * 128=1.6 M ~ p a r a m s: ~}\left(3^{*} 3^{*} 128\right)^{*} 128=147,456$
POOL2: [56x56x128] memory: 56*56*128=400K params: 0
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 128\right)^{*} 256=294,912$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
CONV3-256: [56x56x256] memory: $56 * 56 * 256=800 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 256\right)^{*} 256=589,824$
POOL2: [28x28×256] memory: $28 * 28 * 256=200 \mathrm{~K}$ params: 0
CONV3-512: [28x28x512] memory: $28^{*} 28 * 512=400 \mathrm{~K}$ params: $\left(3 * 3^{*} 256\right)^{*} 512=1,179,648$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
CONV3-512: [28x28x512] memory: $28^{*} 28^{*} 512=400 \mathrm{~K}$ params: $\left(3^{*} 3^{*} 512\right)^{*} 512=2,359,296$
POOL2: [14x14×512] memory: $14^{*} 14 * 512=100 \mathrm{~K}$ params: 0
CONV3-512: [14×14x512] memory: 14*14*512=100K params: $\left(3^{*} 3 * 512\right)^{*} 512=2,359,296$
CONV3-512: [14×14×512] memory: 14*14*512=100K params: (3*3*512)*512 = 2,359,296
CONV3-512: [14x14x512] memory: 14*14*512=100K params: (3*3*512)*512 $=2,359,296$
Most memory is in early CONV

POOL2: [7x7x512] memory: $7^{*} 7 * 512=25 \mathrm{~K}$ params: 0
FC: [1x1x4096] memory: 4096 params: $7^{*} 7 * 512^{*} 4096=102,760,448$
FC: [1x1x4096] memory: 4096 params: $4096 * 4096=16,777,216$
FC: [1x1x1000] memory: 1000 params: $4096 * 1000=4,096,000$

TOTAL memory: 24 M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) TOTAL params: 138M parameters

[^1]
Case Study: GoogLeNet

Inception module

ILSVRC 2014 winner (6.7\% top 5 error)

Case Study: GoogLeNet

type	patch sine/ stride	output sise	depth	\#1×1	\#3 ${ }^{173}$ reduce	\#3×3	\#5 ${ }^{\# 5}$ moluce	\#5 $\times 5$	$\begin{aligned} & \hline \text { pood } \\ & \text { proj } \end{aligned}$	params	ops
coevolution	$7 \times 7 / 2$	$112 \times 112 \times 64$	1							27K	34M
max pool	$3 \times 3 / 2$	$56 \times 56 \times 64$	0								
coevolution	$3 \times 3 / 1$	$56 \times 56 \times 192$	2		64	192				112K	360 M
max pool	$3 \times 3 / 2$	$28 \times 28 \times 192$	0								
inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304 M
max pool	$3 \times 3 / 2$	$14 \times 14 \times 480$	0								
inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
inceptrion (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100 M
inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580 K	119 M
inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
max pool	$3 \times 3 / 2$	$7 \times 7 \times 832$	0								
isceptica (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
avg pool	$7 \times 7 / 1$	$1 \times 1 \times 1024$	0								
dropont (40\%)		$1 \times 1 \times 1024$	0								
linear		$1 \times 1 \times 1000$	1							1000 K	1M
sotmas		$1 \times 1 \times 1000$	0								

Fun features:

- Only 5 million params! (Removes FC layers completely)

Compared to AlexNet: - 12X less params - $2 x$ more compute - 6.67% (vs. 16.4\%)

Case Study: ResNet [He et al, 2015$]$

ILSVRC 2015 winner (3.6\% top 5 error)

Slide from Kaiming He’s ICCV 2015 presentation https://www.youtube.com/watch?v=1PGLj-uKT1w

(slide from Kaiming He's ICCV 2015 presentation)

CIFAR-10 experiments

CIFAR-10 ResNets

20-layer 32-layer 44-layer 56-layer 110-layer

Case Study: ResNet H Heetal, 2015]

ILSVRC 2015 winner (3.6\% top 5 error)

at runtime: faster than a VGGNet! (even though it has $8 x$ more layers)

Case Study: ResNet

[He et al., 2015]

34-layer plain

34-layer residual

Case Study: ResNet [He et al, 2015]

Case Study: ResNet [He et al, 2015]

- Batch Normalization after every CONV layer
- Xavier/2 initialization from He et al.
- SGD + Momentum (0.9)
- Learning rate: 0.1, divided by 10 when validation error plateaus
- Mini-batch size 256
- Weight decay of 1e-5
- No dropout used
- ResNet architecture can be thought of as large ensemble of relatively shallow networks. [Veit et al. NIPS 2016]

Intro to CNNs Summary

- ConvNets stack CONV,POOL,FC layers
- Trend towards smaller filters and deeper architectures
- Trend towards getting rid of POOL/FC layers (just CONV)
- Typical architectures look like [(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX where N is usually up to ~ 5, M is large, $0<=\mathrm{K}<=2$.
- but recent advances such as ResNet/GoogLeNet challenge this paradigm

Spatial Localization and Detection

Results from Faster R-CNN, Ren et al 2015

Computer Vision Tasks

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Classification + Localization: Task

Classification: C classes
Input: Image
Output: Class label
Evaluation metric: Accuracy

Localization:
Input: Image
Output: Box in the image ($\mathrm{x}, \mathrm{y}, \mathrm{w}, \mathrm{h}$)

Evaluation metric: Intersection over Union

Classification + Localization: Do both

Localization as Regression

Input: image

Output:

Box coordinates
(4 numbers)
Correct output: box coordinates

Only one object, simpler than detection (4 numbers)

Simple Recipe for Classification + Localization

Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

> Convolution and Pooling

Image

Simple Recipe for Classification + Localization

Step 2: Attach new fully-connected "regression head" to the network

Simple Recipe for Classification + Localization

Step 3: Train the regression head only with SGD and L2 loss

Image

Fully-connected layers
inal conv
feature map

Simple Recipe for Classification + Localization

Step 4: At test time use both heads

Per-class vs class agnostic regression

Assume classification over C classes:

Classification head:
C numbers (one per class)

Class agnostic: 4 numbers (one box)
Class specific:
C x 4 numbers
(one box per class)

Where to attach the regression head?

Aside: Localizing multiple objects

Want to localize exactly K objects in each image

Fully-connected layers
(e.g. whole cat, cat head, cat left ear, cat right ear for $\mathrm{K}=4$)

Convolution and Pooling

K $\times 4$ numbers (one box per object)

Sliding Window: Overfeat

Winner of ILSVRC 2013
localization challenge

Convolution + pooling

Image:
$3 \times 221 \times 221$

Feature map: $1024 \times 5 \times 5$

Sliding Window: Overfeat

Network input:
$3 \times 221 \times 221$

Larger image:
$3 \times 257 \times 257$

Sliding Window: Overfeat

Network input: $3 \times 221 \times 221$

Larger image: $3 \times 257 \times 257$

Classification scores: P(cat)

Sliding Window: Overfeat

Network input: $3 \times 221 \times 221$

Larger image:
$3 \times 257 \times 257$

Classification scores: P(cat)

Sliding Window: Overfeat

Network input: $3 \times 221 \times 221$

Larger image: $3 \times 257 \times 257$

0.5	0.75
0.6	

Classification scores: P(cat)

Sliding Window: Overfeat

Network input: $3 \times 221 \times 221$

Larger image:
$3 \times 257 \times 257$

0.5	0.75
0.6	0.8

Classification scores: P(cat)

Sliding Window: Overfeat

Network input: $3 \times 221 \times 221$

Larger image:
$3 \times 257 \times 257$

Classification scores: P(cat)

Sliding Window: Overfeat

Greedily merge boxes and scores (details in paper)

Network input: $3 \times 221 \times 221$

Larger image:
$3 \times 257 \times 257$

0.8

Classification score: P(cat)

Sliding Window: Overfeat

In practice use many sliding window locations and multiple scales

Window positions + score maps

Box regression outputs

Final Predictions

Sermanet et al, "Integrated Recognition, Localization and Detection using Convolutional Networks", ICLR 2014

Efficient Sliding Window: Overfeat

40964096 | Class scores: |
| :--- |
| 1000 |

Efficient Sliding Window: Overfeat

Efficient sliding window by converting fullyconnected layers into convolutions

Summary: Sliding Window

- Run classification + regression network at multiple locations on a high-resolution image
- Convert fully-connected layers into convolutional layers for efficient computation
- Combine classifier and regressor predictions across all scales for final prediction

ImageNet Classification + Localization (1 object per image)

AlexNet: Localization method not published

Overfeat: Multiscale convolutional regression with box merging

VGG: Same as Overfeat, but fewer scales and locations; simpler method, gains all due to deeper features

ResNet: Different localization method (RPN) and much deeper features

Computer Vision Tasks

Classification

Classification + Localization

Object Detection

Computer Vision Tasks

Classification

Classification

+ Localization

Object Detection

Detection Metrics - COCO Challenge

Average Precision (AP) :

> AP
> $\mathrm{AP}^{\text {IoU }=. ~} 50$
> $\mathrm{AP}^{\text {IoU }} . .75$

AP Across Scales:
AP ${ }^{s m a 11}$
AP ${ }^{\text {medium }}$
$A P^{\text {large }}$
Average Recall (AR):
$\mathrm{AR}^{\max =1}$
$\mathrm{AR}^{\max =10}$
$\mathrm{AR}^{\max }=100$
AR Across Scales:
$\mathrm{AR}^{\text {small }}$
$A R^{\text {medium }}$
$A R^{\text {large }}$
\% AP at $\mathrm{IoU}=.50: .05: .95$ (determines challenge winner)
\% AP at $I o U=.50$ (PASCAL VOC metric)
\% AP at $\mathrm{IoU}=.75$ (strict metric)
\% AP for small objects: area $<32^{2}$
\% AP for medium objects: $32^{2}<$ area $<96^{2}$
\% AP for large objects: area $>96^{2}$
\% AR given 1 detection per image
\% AR given 10 detections per image
\% AR given 100 detections per image
\% AR for small objects: area $<32^{2}$
\% AR for medium objects: $32^{2}<$ area $<96^{2}$
\% AR for large objects: area $>96^{2}$

Detection Metrics

Average Precision (AP) :

AP
$A^{\text {IoU }=. ~} 50$
$A^{\text {IOU }}=.75$

```
% AP at IoU=.50:.05:.95 (determines challenge winner)
% AP at IoU=.50 (PASCAL VOC metric)
% AP at IoU=. }75\mathrm{ (strict metric)
```


Challenges Score: AP

- AP is averaged over multiple loU values between 0.5 and 0.95 .
- More comprehensive metric than the traditional AP at a fixed IoU value (0.5 for PASCAL).

Detection Metrics

AP Across Scales:
$\mathrm{AP}^{\text {small }}$
AP ${ }^{\text {nedium }}$
8 AP for small objects: area $<32^{2}$
$A P^{\text {large }}$

```
% AP for medium objects: 32 < < area < 96 '
% AP for large objects: area > 96 
```


Other Scores: Size AP

- AP is averaged over instance size:

A $<32 \times 32$

- small (A < 32×32)
- medium ($32 \times 32<A<96 \times 96$)
- large (A>96×96)

Detection Metrics

```
Average Recall (AR):
    AR
    AR
    AR}\mp@subsup{}{}{\mathrm{ nax }}=10
AR Across Scales:
AR smal1
AR
% AR given 1 detection per image
& AR given 10 detections per image
% AR given }100\mathrm{ detections per image
% AR for small objects: area < 32 2
% AR for medium objects: 32 < < area < 96 
AR large
% AR for large objects: area > 96 
```


Other Scores: AR

- Measures the maximum recall over a fixed number of detections allowed in the image of 1, 10, 100.
- AR is averaged over small ($\mathrm{A}<32 \times 32$), medium ($32 \times 32<\mathrm{A}<96 \times 96$) and large (A $>96 \times 96$) instances of objects.

Detection Ambiguity

Which one is better?

$$
\mathrm{IoU}=0.5
$$

IoU = 0.7

$\mathrm{IoU}=0.95$

Ground-Truth BBox \square Detection BBox

Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)
CAT, (x, y, w, h) $\operatorname{DUCK}(x, y, w, h)$
$=16$ numbers

Detection as Regression?

DOG, (x, y, w, h)
CAT, (x, y, w, h)
$=8$ numbers

Detection as Regression?

Need variable sized outputs

Detection as Classification

CAT? NO

DOG? NO

Detection as Classification

CAT? YES!

DOG? NO

Detection as Classification

CAT? NO

DOG? NO

Detection as Classification

Problem: Need to test many positions and scales

Solution: If your classifier is fast enough, just do it

Detection as Classification

Problem: Need to test many positions and scales,
and use a computationally demanding classifier (CNN)

Solution: Only look at a tiny subset of possible positions

Region Proposals

- Find "blobby" image regions that are likely to contain objects
- "Class-agnostic" object detector
- Look for "blob-like" regions

Region Proposals: Selective Search

Bottom-up segmentation, merging regions at multiple scales

Uijlings et al, "Selective Search for Object Recognition", IJCV 2013

Region Proposals: Many other choices

Method	Approach	Outputs Segments	Outputs Score	Control \#proposals	Time (sec.)	Repeatability	Recall Results	Detection Results
Bing [18]	Window scoring		\checkmark	\checkmark	0.2	***	*	.
CPMC [19]	Grouping	\checkmark	\checkmark	\checkmark	250	-	**	*
EdgeBoxes [20]	Window scoring		\checkmark	\checkmark	0.3	**	***	***
Endres [21]	Grouping	\checkmark	\checkmark	\checkmark	100	-	***	**
Geodesic [22]	Grouping	\checkmark		\checkmark	1	*	***	**
MCG [23]	Grouping	\checkmark	\checkmark	\checkmark	30	*	* **	* **
Objectness [24]	Window scoring		\checkmark	\checkmark	3	.	\star	.
Rahtu [25]	Window scoring		\checkmark	\checkmark	3	.	.	*
RandomizedPrim's [26]	Grouping	\checkmark		\checkmark	1	*	*	**
Rantalankila [27]	Grouping	\checkmark		\checkmark	10	**	.	**
Rigor [28]	Grouping	\checkmark		\checkmark	10	*	**	**
SelectiveSearch [29]	Grouping	\checkmark	\checkmark	\checkmark	10	**	***	$\star * *$
Gaussian				\checkmark	0	.	-	*
Slidingwindow				\checkmark	0	* **	-	.
Superpixels		\checkmark			1	*	.	-
Uniform				\checkmark	0	-	-	-

Hosang et al, "What makes for effective detection proposals?", PAMI 2015

Putting it together: R-CNN

[^2]Post hoc component

Girschick et al, "Rich feature hierarchies for accurate object detection and semantic segmentation", CVPR 2014

Slide credit: Ross Girschick

R-CNN Training

Step 1: Train (or download) a classification model for ImageNet (AlexNet)

> Convolution and Pooling

R-CNN Training

Step 2: Fine-tune model for detection

- Instead of 1000 ImageNet classes, want PASCAL 20 object classes + background
- Throw away final fully-connected layer, reinitialize from scratch
- Keep training model using positive / negative regions from detection images

R-CNN Training

Step 3: Extract features

- Extract region proposals for all images
- For each region: warp to CNN input size, run forward through CNN, save pool5 features to disk
- Have a big hard drive: features are ~200GB for PASCAL dataset!

Image

Region Proposals Crop + Warp

Convolution and Pooling

Forward pass

R-CNN Training

Step 4: Train one binary SVM per class to classify region features

Positive samples for cat SVM

Negative samples for cat SVM

R-CNN Training

Step 4: Train one binary SVM per class to classify region features

R-CNN Training

Step 5 (bbox regression): For each class, train a linear regression model to map from cached features to offsets to GT boxes to make up for "slightly wrong" proposals

Training image regions

Cached region features

$$
\begin{aligned}
& (0,0,0,0) \\
& \text { Proposal is good }
\end{aligned}
$$

(.25, 0, 0, 0)

Proposal too far to left

(0, 0, -0.125, 0)
Proposal too wide

Object Detection: Datasets

	PASCAL VOC (2010)	ImageNet Detection (ILSVRC 2014)	COCO (2014)
Number of classes	20	200	80
Number of images (train + val)	$\sim 20 \mathrm{k}$	$\sim 470 \mathrm{k}$	$\sim 120 \mathrm{k}$
Mean objects per image	2.4	1.1	$\mathbf{7 . 2}$

R-CNN Problems

1. Slow at test-time: need to run full forward pass of CNN for each region proposal
2. SVMs and regressors are post-hoc: CNN features not updated in response to SVMs and regressors
3. Complex multistage training pipeline

Fast R-CNN (test time)

R-CNN Problem \#1:

 Slow at test-time due to independent forward passes of the CNN

Solution:

Share computation of convolutional
layers between proposals for an image

Fast R-CNN (training)

Multi-task loss

R-CNN Problem \#2:
Post-hoc training: CNN not updated in response to final classifiers and regressors

R-CNN Problem \#3:

Complex training pipeline

Solution:

Just train the whole system end-to-end all at once!

Fast R-CNN: Region of Interest Pooling

Convolution
and Pooling

Hi-res input image:
$3 \times 800 \times 600$
with region
proposal

Hi-res conv features:
C $\times \mathrm{H} \times \mathrm{W}$
with region proposal

Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fast R-CNN: Region of Interest Pooling

Fast R-CNN: Region of Interest Pooling

Convolution and Pooling

Hi-res input image:
$3 \times 800 \times 600$
with region
proposal

Divide projected region into $\mathrm{h} \times \mathrm{w}$ grid

Hi-res conv features:
C x H xW
with region proposal

Fully-connected layers

Problem: Fully-connected layers expect low-res conv features: C x h x w

Fast R-CNN: Region of Interest Pooling

Fast R-CNN: Region of Interest Pooling

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	9.5 hours
	(Speedup)	$1 x$	$8.8 x$

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

		R-CNN	Fast R-CNN
Faster!	Training Time:	84 hours	$\mathbf{9 . 5}$ hours
	(Speedup)	1 x	$\mathbf{8 . 8 x}$
FASTER!	Test time per image	47 seconds	$\mathbf{0 . 3 2}$ seconds
	(Speedup)	$1 x$	$\mathbf{1 4 6 x}$

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Results

| | | R-CNN | Fast R-CNN |
| :--- | :--- | :--- | :--- | :--- |
| Faster! | Training Time: | 84 hours | $\mathbf{9 . 5}$ hours |
| | (Speedup) | 1 x | $\mathbf{8 . 8 x}$ |
| FASTER! | Test time per image | 47 seconds | $\mathbf{0 . 3 2}$ seconds |
| | (Speedup) | 1 x | $\mathbf{1 4 6 x}$ |
| Better! | mAP (VOC 2007) | 66.0 | $\mathbf{6 6 . 9}$ |

Using VGG-16 CNN on Pascal VOC 2007 dataset

Fast R-CNN Problem:

Test-time speeds don't include region proposals

	R-CNN	Fast R-CNN
Test time per image	47 seconds	$\mathbf{0 . 3 2}$ seconds
(Speedup)	$1 x$	$\mathbf{1 4 6 x}$
Test time per image with Selective Search	50 seconds	$\mathbf{2}$ seconds
(Speedup)	$1 \mathbf{x}$	$\mathbf{2 5 x}$

Fast R-CNN Problem Solution:

Test-time speeds don't include region proposals Just make the CNN do region proposals too!

	R-CNN	Fast R-CNN
Test time per image	47 seconds	$\mathbf{0 . 3 2}$ seconds
(Speedup)	$1 x$	$\mathbf{1 4 6 x}$
Test time per image with Selective Search	50 seconds	$\mathbf{2}$ seconds
(Speedup)	$1 x$	$\mathbf{2 5 x}$

Faster R-CNN:

Insert a Region Proposal

Network (RPN) after the last convolutional layer

RPN trained to produce region proposals directly; no need for external region proposals!

After RPN, use Rol Pooling and an upstream classifier and bbox regressor just like Fast R-CNN

[^3]
Faster R-CNN: Region Proposal Network

Slide a small window on the feature map

convolutional feature map

Faster R-CNN: Region Proposal Network

Use \mathbf{N} anchor boxes at each location

Anchors are translation invariant: use the same ones at every location

Regression gives offsets from anchor boxes

Classification gives the probability that each (regressed) anchor shows an object

Faster R-CNN: Results

	R-CNN	Fast R-CNN	Faster R-CNN
Test time per image (with proposals)	50 seconds	2 seconds	$\mathbf{0 . 2}$ seconds
(Speedup)	1 x	25 x	$\mathbf{2 5 0 x}$
mAP (VOC 2007)	66.0	$\mathbf{6 6 . 9}$	$\mathbf{6 6 . 9}$

Object Detection State-of-the-art: ResNet 101 + Faster R-CNN + some extras

training data	COCO train		COCO trainval	
test data	COCO val		COCO test-dev	
mAP	@.5	@[.5,.95]	$@ .5$	$@[.5, .95]$
baseline Faster R-CNN (VGG-16)	41.5	21.2		
baseline Faster R-CNN (ResNet-101)	48.4	27.2		
+box refinement	49.9	29.9		
+context	51.1	30.0	53.3	32.2
+multi-scale testing	53.8	32.5	$\mathbf{5 5 . 7}$	$\mathbf{3 4 . 9}$
ensemble			$\mathbf{5 9 . 0}$	$\mathbf{3 7 . 4}$

He et. al, "Deep Residual Learning for Image Recognition", arXiv 2015

YOLO: You Only Look Once Detection as Regression

Divide image into $S \times S$ grid
Within each grid cell predict:
B Boxes: 4 coordinates + confidence

Class scores: C numbers

Regression from image to $7 \times 7 \times(5$ * $+C$) tensor

Direct prediction using a CNN

Object Detection code links:

R-CNN
(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn
Probably don't use this; too slow
\section*{Fast R-CNN}
(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn
Faster R-CNN
(Caffe + MATLAB): https://github.com/ShaogingRen/faster_renn
(Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn
\section*{YOLO}
http://pireddie.com/darknet/yolo/
(To be presented in class)

[^0]: * Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

[^1]: * Original slides borrowed from Andrej Karpathy and Li Fei-Fei, Stanford cs231n

[^2]: Girshick et al. CVPR14.

[^3]: Ren et al, "Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks", NIPS 2015

 Slide credit: Ross Girschick

