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Lectures 7 and 8: 
Convolutional Neural Networks 

and  
Spatial Localization and Detection 

Thursday February 16, 2017
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Announcements!

- HW #2 due next Friday Feb 24 

- Read AlexNet paper for next class 

- Post paper summaries and discussion questions to class blog by Mon Feb 
20 11:59pm

- These are easy points. Don’t miss them.  

- Final project teams will be posted to webpage this weekend. 
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Python/Numpy of the Day 

- enumerate(<iterable object>)

- returns iterator not generator, but use case 
behavior is similar

- no ‘yeild’

- 3

for ind, thing in enumerate(list_of_things):
    print ‘index: {} item: {}’.format(ind, thing)

output:
index: 0 item: thing0
index: 1 item: thing1
…

- np.full(shape, fill_val) and 
np.full_like(ex_array, fill_val)
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Mini-batch SGD
Loop: 
1. Sample a batch of data 
2. Forward prop it through the graph, get loss 
3. Backprop to calculate the gradients 
4. Update the parameters using the gradient
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Image credits: Alec Radford

Parameter 
updates

We covered: 
sgd, 
momentum, 
nag, 
adagrad, 
rmsprop, 
adam (not in this vis), 

we did not cover adadelta
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Forces the network to have a redundant representation.

has an ear

has a tail

is furry

has claws

mischievous  
look

cat  
score

X

X

X

Dropout
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Convolutional Neural Networks


[LeNet-5, LeCun 1980]



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 8

Convolutional Neural Networks
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Review from  linear filters

9

Original

Sharpening filter 
- Accentuates differences with local 
average

Source: D. Lowe

Sobel filter 
- Vertical Edges
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32

32

3

Convolution Layer
32x32x3 image

width

height

depth
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products”
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Convolution Layer - the convolution is in Fourier space

Credit: European Southern Observatory

www.doitpoms.ac.uk 12
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32

32

3

Convolution Layer

5x5x3 filter

32x32x3 image

Convolve the filter with the image 
i.e. “slide over the image spatially, 
computing dot products”

Filters always extend the full 
depth of the input volume
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32

32

3

Convolution Layer

32x32x3 image 
5x5x3 filter

1 number:  
the result of taking a dot product between the 
filter and a small 5x5x3 chunk of the image 
(i.e. 5*5*3 = 75-dimensional dot product + bias)
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32

32

3

Convolution Layer

32x32x3 image 
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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32

32

3

Convolution Layer

32x32x3 image 
5x5x3 filter

convolve (slide) over all 
spatial locations

activation maps

1

28

28

consider a second, green filter
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32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 18

Preview: ConvNet is a sequence of Convolution Layers, interspersed with 
activation functions

32

32

3

28

28

6

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters
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Preview: ConvNet is a sequence of Convolutional Layers, interspersed with 
activation functions

32

32

3

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters 28

28

6

CONV, 
ReLU 
e.g. 10 
5x5x6 
filters

CONV, 
ReLU

….

10

24

24
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Preview [From recent Yann 
LeCun slides]
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Activation Maps 
from Filters at 
different layers 
of AlexNet:
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A closer look at spatial dimensions:

32

32

3

32x32x3 image 
5x5x3 filter

convolve (slide) over all 
spatial locations

activation map

1

28

28
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7x7 input (spatially) 
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter 

=> 5x5 output

7

7

A closer look at spatial dimensions:



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 28

7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 2 
=> 3x3 output! 

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 3?

7

7

A closer look at spatial dimensions:
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7x7 input (spatially) 
assume 3x3 filter 
applied with stride 3?

7

7

A closer look at spatial dimensions:

doesn’t fit!  
cannot apply 3x3 filter on 
7x7 input with stride 3.
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N 

N F 

F 

Output size: 
(N - F) / stride + 1 

e.g. N = 7, F = 3: 
stride 1 => (7 - 3)/1 + 1 = 5 
stride 2 => (7 - 3)/2 + 1 = 3 
stride 3 => (7 - 3)/3 + 1 = 2.33 :\
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In practice: Common to zero pad the border
0 0 0 0 0 0

0

0

0

0

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 

(recall:) 
(N - F) / stride + 1
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In practice: Common to zero pad the border

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 

7x7 output! 

0 0 0 0 0 0

0

0

0

0
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In practice: Common to zero pad the border

e.g. input 7x7 
3x3 filter, applied with stride 1  
pad with 1 pixel border => what is the output? 

7x7 output! 
in general, common to see CONV layers with 
stride 1, filters of size FxF, and zero-padding with 
(F-1)/2. (will preserve size spatially) 
e.g. F = 3 => zero pad with 1 
       F = 5 => zero pad with 2 
       F = 7 => zero pad with 3 

0 0 0 0 0 0

0

0

0

0
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Remember back to…  
E.g. 32x32 input convolved repeatedly with 5x5 filters shrinks volumes spatially! 
(32 -> 28 -> 24 ...). Shrinking too fast is not good, doesn’t work well.

32

32

3

CONV, 
ReLU 
e.g. 6 
5x5x3 
filters 28

28

6

CONV, 
ReLU 
e.g. 10 
5x5x6 
filters

CONV, 
ReLU

….

10

24

24
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Output volume size: ?
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Output volume size:  
(32+2*2-5)/1+1 = 32 spatially, so 
32x32x10
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Number of parameters in this layer?
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Examples time:

Input volume: 32x32x3 
10 5x5 filters with stride 1, pad 2 

Number of parameters in this layer? 
each filter has 5*5*3 + 1 = 76 params      (+1 for bias) 

=> 76*10 = 760
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Common settings: 

K = (powers of 2, e.g. 32, 64, 128, 512) 
- F = 3, S = 1, P = 1 
- F = 5, S = 1, P = 2 
- F = 5, S = 2, P = ? (whatever fits) 
- F = 1, S = 1, P = 0
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(btw, 1x1 convolution layers make perfect sense)

64

56

56
1x1 CONV 
with 32 filters

32
56

56
(each filter has size 
1x1x64, and performs a 
64-dimensional dot 
product)
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Example: CONV 
layer in Torch
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Example: CONV 
layer in Caffe
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Pooling and  
FC Layers
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Pooling layer 
- makes the representations smaller and more manageable  
- operates over each activation map independently: 
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1 1 2 4

5 6 7 8

3 2 1 0

1 2 3 4

Single depth slice

x

y

max pool with 2x2 filters 
and stride 2 6 8

3 4

MAX POOLING 
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Summary of Pooling Layer
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Common settings: 

F = 2, S = 2 
F = 3, S = 2

Summary of Pooling Layer
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Fully Connected Layer (FC layer) 
- Contains neurons that connect to the entire input volume, as in ordinary Neural 

Networks 
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http://
cs.stanford.edu/
people/karpathy/
convnetjs/demo/
cifar10.html

ConvNetJS 
demo: 
training on 
CIFAR-10

http://cs.stanford.edu/people/karpathy/convnetjs/demo/cifar10.html
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Case Study: LeNet-5
[LeCun et al., 1998]

Conv filters were 5x5, applied at stride 1 
Subsampling (Pooling) layers were 2x2 applied at stride 2 
i.e. architecture is [CONV-POOL-CONV-POOL-CONV-FC]
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 

First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Q: what is the output volume size? Hint: (227-11)/4+1 = 55
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 

First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Output volume [55x55x96] 

Q: What is the total number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 

First layer (CONV1): 96 11x11 filters applied at stride 4 
=> 
Output volume [55x55x96] 
Parameters: (11*11*3)*96 = 35K
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 
After CONV1: 55x55x96 

Second layer (POOL1): 3x3 filters applied at stride 2 

Q: what is the output volume size? Hint: (55-3)/2+1 = 27
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 
After CONV1: 55x55x96 

Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 

Q: what is the number of parameters in this layer?
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 
After CONV1: 55x55x96 

Second layer (POOL1): 3x3 filters applied at stride 2 
Output volume: 27x27x96 
Parameters: 0!
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Input: 227x227x3 images 
After CONV1: 55x55x96 
After POOL1: 27x27x96 
...
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 
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Case Study: AlexNet
[Krizhevsky et al. 2012]

Full (simplified) AlexNet architecture: 
[227x227x3] INPUT 
[55x55x96] CONV1: 96 11x11 filters at stride 4, pad 0 
[27x27x96] MAX POOL1: 3x3 filters at stride 2 
[27x27x96] NORM1: Normalization layer 
[27x27x256] CONV2: 256 5x5 filters at stride 1, pad 2 
[13x13x256] MAX POOL2: 3x3 filters at stride 2 
[13x13x256] NORM2: Normalization layer 
[13x13x384] CONV3: 384 3x3 filters at stride 1, pad 1 
[13x13x384] CONV4: 384 3x3 filters at stride 1, pad 1 
[13x13x256] CONV5: 256 3x3 filters at stride 1, pad 1 
[6x6x256] MAX POOL3: 3x3 filters at stride 2 
[4096] FC6: 4096 neurons 
[4096] FC7: 4096 neurons 
[1000] FC8: 1000 neurons (class scores) 

Details/Retrospectives:  
- first use of ReLU 
- used Norm layers (not common anymore) 
- heavy data augmentation 
- dropout 0.5 
- batch size 128 
- SGD Momentum 0.9 
- Learning rate 1e-2, reduced by 10 
manually when val accuracy plateaus 
- L2 weight decay 5e-4 
- 7 CNN ensemble: 18.2% -> 15.4%
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Case Study: VGGNet
[Simonyan and Zisserman, 2014]

best model

Only 3x3 CONV stride 1, pad 1 
and  2x2 MAX POOL stride 2

11.2% top 5 error in ILSVRC 2013 
-> 
7.3% top 5 error
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

(not counting biases)
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) 
TOTAL params: 138M parameters
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INPUT: [224x224x3]        memory:  224*224*3=150K   params: 0 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*3)*64 = 1,728 
CONV3-64: [224x224x64]  memory:  224*224*64=3.2M   params: (3*3*64)*64 = 36,864 
POOL2: [112x112x64]  memory:  112*112*64=800K   params: 0 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*64)*128 = 73,728 
CONV3-128: [112x112x128]  memory:  112*112*128=1.6M   params: (3*3*128)*128 = 147,456 
POOL2: [56x56x128]  memory:  56*56*128=400K   params: 0 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*128)*256 = 294,912 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
CONV3-256: [56x56x256]  memory:  56*56*256=800K   params: (3*3*256)*256 = 589,824 
POOL2: [28x28x256]  memory:  28*28*256=200K   params: 0 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*256)*512 = 1,179,648 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [28x28x512]  memory:  28*28*512=400K   params: (3*3*512)*512 = 2,359,296 
POOL2: [14x14x512]  memory:  14*14*512=100K   params: 0 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
CONV3-512: [14x14x512]  memory:  14*14*512=100K   params: (3*3*512)*512 = 2,359,296 
POOL2: [7x7x512]  memory:  7*7*512=25K  params: 0 
FC: [1x1x4096]  memory:  4096  params: 7*7*512*4096 = 102,760,448 
FC: [1x1x4096]  memory:  4096  params: 4096*4096 = 16,777,216 
FC: [1x1x1000]  memory:  1000 params: 4096*1000 = 4,096,000 

(not counting biases)

TOTAL memory: 24M * 4 bytes ~= 93MB / image (only forward! ~*2 for bwd) 
TOTAL params: 138M parameters

Note: 

Most memory is in 
early CONV 

Most params are 
in late FC
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Case Study: GoogLeNet [Szegedy et al., 2014]

Inception module

ILSVRC 2014 winner (6.7% top 5 error) 
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Case Study: GoogLeNet

Fun features: 

- Only 5 million params! 
(Removes FC layers 
completely) 

Compared to AlexNet: 
- 12X less params 
- 2x more compute 
- 6.67% (vs. 16.4%)
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Slide from Kaiming He’s ICCV 2015 presentation https://www.youtube.com/watch?v=1PGLj-uKT1w 

Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error) 

https://www.youtube.com/watch?v=1PGLj-uKT1w
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(slide from Kaiming He’s ICCV 2015 presentation)
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Case Study: ResNet [He et al., 2015]

ILSVRC 2015 winner (3.6% top 5 error) 

(slide from Kaiming He’s ICCV 2015 presentation)

2-3 weeks of training 
on 8 GPU machine 

at runtime: faster 
than a VGGNet! 
(even though it has 
8x more layers)
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Case Study:  
ResNet
[He et al., 2015]

224x224x3

spatial dimension 
only 56x56!
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Case Study: ResNet [He et al., 2015]
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Case Study: ResNet [He et al., 2015]

- Batch Normalization after every CONV layer 
- Xavier/2 initialization from He et al. 
- SGD + Momentum (0.9)  
- Learning rate: 0.1, divided by 10 when validation error plateaus 
- Mini-batch size 256 
- Weight decay of 1e-5 
- No dropout used 
- ResNet architecture can be thought of as large ensemble of 

relatively shallow networks. [Veit et al. NIPS 2016]
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Intro to CNNs Summary 

- ConvNets stack CONV,POOL,FC layers 
- Trend towards smaller filters and deeper architectures 
- Trend towards getting rid of POOL/FC layers (just CONV) 
- Typical architectures look like  

[(CONV-RELU)*N-POOL?]*M-(FC-RELU)*K,SOFTMAX 
      where N is usually up to ~5, M is large, 0 <= K <= 2. 

- but recent advances such as ResNet/GoogLeNet 
challenge this paradigm
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Results from Faster R-CNN, Ren et al 2015

Spatial Localization and Detection
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Classification Classification 
+ Localization

Computer Vision Tasks

CAT CAT CAT, DOG, DUCK

Object Detection Instance 
Segmentation

CAT, DOG, DUCK

Single object Multiple objects
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Classification Classification 
+ Localization

Computer Vision Tasks

Object Detection Instance 
Segmentation
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Classification + Localization: Task
Classification: C classes 
 Input: Image 
 Output: Class label 
 Evaluation metric: Accuracy 

Localization: 
 Input: Image 
 Output: Box in the image (x, y, w, h) 
 Evaluation metric: Intersection over Union 

Classification + Localization: Do both

CAT

(x, y, w, h)
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Localization as Regression

Input: image

Output:  
Box coordinates 
(4 numbers)

Neural Net

Correct output:   
box coordinates 
(4 numbers)

Loss: 
L2 distance

Only one object,  
simpler than detection



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 83

Simple Recipe for Classification + Localization
Step 1: Train (or download) a classification model (AlexNet, VGG, GoogLeNet)

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Softmax loss
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Simple Recipe for Classification + Localization
Step 2: Attach new fully-connected “regression head” to the network

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

“Classification head”

“Regression head”
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Simple Recipe for Classification + Localization
Step 3: Train the regression head only with SGD and L2 loss

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

L2 loss
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Simple Recipe for Classification + Localization
Step 4: At test time use both heads

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates
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Per-class vs class agnostic regression

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

Assume classification 
over C classes: Classification head: 

C numbers  
(one per class)

Class agnostic: 
4 numbers 
(one box)
Class specific: 
C x 4 numbers 
(one box per class)
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Where to attach the regression head?

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Softmax loss

After conv layers: 
Overfeat, VGG

After last FC layer: 
DeepPose, R-CNN
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Aside: Localizing multiple objects
Want to localize exactly K 
objects in each image  

(e.g. whole cat, cat head, 
cat left ear, cat right ear for 
K=4)

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores

Fully-connected 
layers

Box coordinates

K x 4 numbers 
(one box per object)
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Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 1024 Boxes: 
1000 x 4

4096 4096 Class scores: 
1000

Softmax 
loss

Euclidean 
loss

Winner of ILSVRC 2013 
localization challenge

FC
FC FC

FC FC

FC

Sermanet et al, “Integrated Recognition, Localization and 
Detection using Convolutional Networks”, ICLR 2014
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Larger image: 

3 x 257 x 257
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Larger image: 

3 x 257 x 257

0.5

Classification scores: 
P(cat)
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

Classification scores: 
P(cat)

Larger image: 
3 x 257 x 257
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6

Classification scores: 
P(cat)

Larger image: 
3 x 257 x 257
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores: 
P(cat)

Larger image: 
3 x 257 x 257
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221

0.5 0.75

0.6 0.8

Classification scores: 
P(cat)

Larger image: 
3 x 257 x 257
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Sliding Window: Overfeat

Network input:  
3 x 221 x 221 Classification score: 

P(cat)
Larger image: 
3 x 257 x 257

Greedily merge boxes and 
scores (details in paper)

0.8
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Sliding Window: Overfeat
In practice use many sliding window 
locations and multiple scales

Window positions + score maps Box regression outputs Final Predictions

Sermanet et al, “Integrated Recognition, Localization and Detection using Convolutional Networks”, ICLR 2014
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Efficient Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 1024 Boxes: 
1000 x 4

4096 4096 Class scores: 
1000

FC

FC
FC FC

FC FC
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Efficient Sliding Window: Overfeat

Image:  
3 x 221 x 221

Convolution  
+ pooling

Feature map:  
1024 x 5 x 5

4096 x 1 x 1 1024 x 1 x 1

5 x 5 
conv

5 x 5 
conv

1 x 1 conv

4096 x 1 x 1 1024 x 1 x 1

Box coordinates: 
(4 x 1000) x 1 x 1

Class scores: 
1000 x 1 x 1

1 x 1 conv

1 x 1 conv 1 x 1 conv

Efficient sliding window by converting fully-
connected layers into convolutions



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 101

Summary: Sliding Window  

- Run classification + regression network at multiple locations on a 
high-resolution image 

- Convert fully-connected layers into convolutional layers for 
efficient computation 

- Combine classifier and  
regressor predictions across all scales for final prediction
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ImageNet Classification + Localization (1 object per image)

AlexNet: Localization method not published 

Overfeat: Multiscale convolutional regression 
with box merging 

VGG: Same as Overfeat, but fewer scales 
and locations; simpler method, gains all due 
to deeper features 

ResNet: Different localization method (RPN) 
and much deeper features



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 103

Classification

Computer Vision Tasks

Object Detection Instance 
Segmentation

Classification 
+ Localization
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Classification Classification 
+ Localization

Computer Vision Tasks
Instance 
SegmentationObject Detection
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Detection Metrics - COCO Challenge

105
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Detection Metrics

106

• AP is averaged over multiple IoU 
values between 0.5 and 0.95.

Challenges Score: AP
• More comprehensive metric than the 

traditional AP at a fixed IoU value (0.5 
for PASCAL).
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• AP is averaged over instance 
size:

• small (A < 32 x 32)

• medium (32x 32 < A < 96 x 96)

• large  (A > 96 x 96)

Detection Metrics

107

A < 32x32

32x32 < A < 96x96

A > 96x96Other Scores: Size AP



comp150dl

Detection Metrics

108

Other Scores: AR

• Measures the maximum recall over a fixed number of detections allowed in 
the image of 1, 10, 100.

• AR is averaged over small (A < 32 x 32), medium (32x 32 < A < 96 x 96) and large  (A 
> 96 x 96) instances of objects. 
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Detection Ambiguity

109

IoU = 0.5 IoU = 0.7 IoU = 0.95

Which one is better?

Detection BBoxGround-Truth BBox
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Detection as Regression?

DOG, (x, y, w, h) 
CAT, (x, y, w, h) 
CAT, (x, y, w, h) 
DUCK (x, y, w, h)  

= 16 numbers
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Detection as Regression?

DOG, (x, y, w, h) 
CAT, (x, y, w, h)  

= 8 numbers
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Detection as Regression?

CAT, (x, y, w, h) 
CAT, (x, y, w, h) 
…. 
CAT (x, y, w, h)  

= many numbers

Need variable sized outputs 
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Detection as Classification

CAT? NO 

DOG? NO
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Detection as Classification

CAT? YES! 

DOG? NO
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Detection as Classification

CAT? NO 

DOG? NO
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Detection as Classification

Problem: Need to test many positions and scales 

Solution: If your classifier is fast enough, just do it 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 117

Detection as Classification

Problem: Need to test many positions and scales,  
and use a computationally demanding classifier (CNN) 

Solution: Only look at a tiny subset of possible positions
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Region Proposals
● Find “blobby” image regions that are likely to contain objects 
● “Class-agnostic” object detector 
● Look for “blob-like” regions
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Region Proposals: Selective Search
Bottom-up segmentation, merging regions at multiple scales

Convert 
regions 
to boxes

 Uijlings et al, “Selective Search for Object Recognition”, IJCV 2013
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Region Proposals: Many other choices

 Hosang et al, “What makes for effective detection proposals?”, PAMI 2015
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Putting it together: R-CNN

Girschick et al, “Rich feature hierarchies for 
accurate object detection and semantic 
segmentation”, CVPR 2014 
 
Slide credit: Ross Girschick
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R-CNN Training
Step 1: Train (or download) a classification model for ImageNet (AlexNet)

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores 
1000 classes

Softmax loss



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 123

R-CNN Training
Step 2: Fine-tune model for detection 
- Instead of 1000 ImageNet classes, want PASCAL 20 object classes + 

background 
- Throw away final fully-connected layer, reinitialize from scratch 
- Keep training model using positive / negative regions from detection images

Image

Convolution 
 and Pooling

Final conv 
feature map

Fully-connected 
layers

Class scores: 
21 classes

Softmax loss

Re-initialize this layer:  
was 4096 x 1000,  
now will be 4096 x 21
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R-CNN Training
Step 3: Extract features 

- Extract region proposals for all images 
- For each region: warp to CNN input size, run forward through CNN, save pool5 

features to disk 
- Have a big hard drive: features are ~200GB for PASCAL dataset!

Image

Convolution 
 and Pooling

pool5 features

Region Proposals Crop + Warp Forward pass Save to disk
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R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Positive samples for cat SVM Negative samples for cat SVM

Training image regions

Cached region features
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R-CNN Training
Step 4: Train one binary SVM per class to classify region features

Training image regions

Cached region features

Negative samples for dog SVM Positive samples for dog SVM
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R-CNN Training
Step 5 (bbox regression): For each class, train a linear regression model to map from 
cached features to offsets to GT boxes to make up for “slightly wrong” proposals

Training image regions

Cached region features

Regression targets 
(dx, dy, dw, dh) 
Normalized coordinates

(0, 0, 0, 0)  
Proposal is good

(.25, 0, 0, 0)  
Proposal too  
far to left

(0, 0, -0.125, 0) 
Proposal too  
wide
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Object Detection: Datasets

PASCAL 
VOC  
(2010)

ImageNet 
Detection 
(ILSVRC 2014)

COCO 
(2014)

Number of 
classes 20 200 80

Number of 
images (train + 
val)

~20k ~470k ~120k

Mean objects per 
image 2.4 1.1 7.2
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R-CNN Problems

1. Slow at test-time: need to run full forward pass of 
CNN for each region proposal 

2. SVMs and regressors are post-hoc: CNN features 
not updated in response to SVMs and regressors 

3. Complex multistage training pipeline
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R-CNN Problem #1:  
Slow at test-time due to 
independent forward 
passes of the CNN 

Solution:  
Share computation 
of convolutional 
layers between 
proposals for an 
image 
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R-CNN Problem #2:  
Post-hoc training: CNN not 
updated in response to final 
classifiers and regressors 

R-CNN Problem #3: 
Complex training pipeline 

Solution: 
Just train the whole system 
end-to-end all at once! 

Slide credit: Ross Girschick
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Fast R-CNN: Region of Interest Pooling

Hi-res input image: 
3 x 800 x 600 
with region 
proposal

Convolution 
 and Pooling

Hi-res conv features: 
C x H x W 
with region proposal

Fully-connected 
layers

Problem: Fully-connected 
layers expect low-res conv 
features: C x h x w 
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Fast R-CNN: Region of Interest Pooling

Hi-res input image: 
3 x 800 x 600 
with region 
proposal

Convolution 
 and Pooling

Hi-res conv features: 
C x H x W 
with region proposal

Fully-connected 
layers

Project region proposal 
onto conv feature map

Problem: Fully-connected 
layers expect low-res conv 
features: C x h x w 
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Fast R-CNN: Region of Interest Pooling

Hi-res input image: 
3 x 800 x 600 
with region 
proposal

Convolution 
 and Pooling

Hi-res conv features: 
C x H x W 
with region proposal

Fully-connected 
layers

Problem: Fully-connected 
layers expect low-res conv 
features: C x h x w 

Divide projected 
region into h x w grid
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Fast R-CNN: Region of Interest Pooling

Hi-res input image: 
3 x 800 x 600 
with region 
proposal

Convolution 
 and Pooling

Hi-res conv features: 
C x H x W 
with region proposal

Fully-connected 
layers

Max-pool within 
each grid cell

RoI conv features: 
C x h x w  
for region proposal

Fully-connected layers expect 
low-res conv features:  
C x h x w 
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Fast R-CNN: Region of Interest Pooling

Hi-res input image: 
3 x 800 x 600 
with region 
proposal

Convolution 
 and Pooling

Hi-res conv features: 
C x H x W 
with region proposal

Fully-connected 
layers

Can back propagate 
similar to max pooling

RoI conv features: 
C x h x w  
for region proposal

Fully-connected layers expect 
low-res conv features:  
C x h x w 



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 137

Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!
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Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER!
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Fast R-CNN Results

R-CNN Fast R-CNN

Training Time: 84 hours 9.5 hours

(Speedup) 1x 8.8x

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

mAP (VOC 2007) 66.0 66.9

Using VGG-16 CNN on Pascal VOC 2007 dataset

Faster!

FASTER!

Better!
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Fast R-CNN Problem:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image 
with Selective Search 50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals
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Fast R-CNN Problem Solution:

R-CNN Fast R-CNN

Test time per image 47 seconds 0.32 seconds

(Speedup) 1x 146x

Test time per image 
with Selective Search 50 seconds 2 seconds

(Speedup) 1x 25x

Test-time speeds don’t include region proposals  
Just make the CNN do region proposals too!
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Faster R-CNN: Insert a Region Proposal 
Network (RPN) after the last 
convolutional layer 

RPN trained to produce region 
proposals directly; no need for 
external region proposals! 

After RPN, use RoI Pooling and an 
upstream classifier and bbox 
regressor just like Fast R-CNN

Ren et al, “Faster R-CNN: Towards Real-Time Object Detection 
with Region Proposal Networks”, NIPS 2015 
 
Slide credit: Ross Girschick
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Faster R-CNN: Region Proposal Network
Slide a small window on the feature map 

Build a small network for: 
• classifying object or not-object, and 
• regressing bbox locations 

Position of the sliding window provides localization 
information with reference to the image 

Box regression provides finer localization information 
with reference to this sliding window 

1 x 1 conv

1 x 1 conv1 x 1 conv

Slide credit: Kaiming He
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Faster R-CNN: Region Proposal Network
Use N anchor boxes at each location 

Anchors are translation invariant: use the 
same ones at every location 

Regression gives offsets from anchor boxes 

Classification gives the probability that each 
(regressed) anchor shows an object 
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Faster R-CNN: Results

R-CNN Fast R-CNN Faster R-CNN

Test time per 
image  
(with proposals)

50 seconds 2 seconds 0.2 seconds

(Speedup) 1x 25x 250x

mAP (VOC 2007) 66.0 66.9 66.9
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Object Detection State-of-the-art:  
ResNet 101 + Faster R-CNN + some extras

He et. al, “Deep Residual Learning for Image Recognition”, arXiv 2015
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YOLO: You Only Look Once 
Detection as Regression
Divide image into S x S grid 

Within each grid cell predict: 
 B Boxes: 4 coordinates + 
confidence 
 Class scores: C numbers 

Regression from image to  
7 x 7 x (5 * B + C) tensor 

Direct prediction using a CNN 

Redmon et al, “You Only Look Once:  
Unified, Real-Time Object Detection”, arXiv 2015 
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Object Detection code links:
R-CNN 
(Cafffe + MATLAB): https://github.com/rbgirshick/rcnn 
Probably don’t use this; too slow 

Fast R-CNN  
(Caffe + MATLAB): https://github.com/rbgirshick/fast-rcnn 

Faster R-CNN 
(Caffe + MATLAB): https://github.com/ShaoqingRen/faster_rcnn 
(Caffe + Python): https://github.com/rbgirshick/py-faster-rcnn  

YOLO 
http://pjreddie.com/darknet/yolo/ 
(To be presented in class)

https://github.com/rbgirshick/rcnn
https://github.com/rbgirshick/fast-rcnn
https://github.com/ShaoqingRen/faster_rcnn
https://github.com/rbgirshick/py-faster-rcnn
http://pjreddie.com/darknet/yolo/

