[ecture 9:
Visualizing CNNs
and
Recurrent Neural Networks

Tuesday February 28, 2017
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Announcements!

HW #3 is out
Final Project proposals due this Thursday March 2

Papers to read: Students should read all papers on the Schedule tab, and
are encouraged to read as many papers as possible from the Papers tab.

Next paper: March 7 You Only Look Once: Unified, Real-Time Object

Detection. If this paper seems too deep or confusing, look at Fast R-CNN,
Faster R-CNN

compisodl £3Tufts



Python/Numpy of the Day

ojpction of the dgrs (time 0.015)
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e Examples of 2D Embedding

* t-SNE (t-Distributed Stochastic
Nearest Neighbor Embedding)
o Scikit-Learn t-SNE

Visualizations of MNIST

dataset

e Other Embedding functions

<~

in Scikit-Learn

comp150dl| @'I\ths


http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
http://scikit-learn.org/stable/auto_examples/manifold/plot_manifold_sphere.html#sphx-glr-auto-examples-manifold-plot-manifold-sphere-py

Visualizing CNN Behavior

- How can we see what’'s going on in a CNN?

Stuff we've already done:

- Visualize the weights
- Occlusion experiments — ex. Jason and Lisa’s AlexNet Occlusion Tests

comp150d| @'rufts



Visualizing CNN Behavior

- How can we see what’s going on in a CNN?

Straightforward stuff to try in the future:
Visualize the representation space (e.g. with t-SNE)
Human experiment comparisons




Visualizing CNN Behavior

- How can we see what’s going on in a CNN?
More sophisticated approaches (HW #4)

" - Visualize patches that maximally activate neurons
..J_l-- - Optimization over image approaches (optimization)
.ﬂ% - Deconv approaches (single backward pass)
ST 8@ Re——
| 69 upéd
il |8
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Deconv approaches -
projecting backward from one neuron to see what is
activating it

1. Feed image into net

Q. how can we compute the gradient of any arbitrary
neuron in the network w.r.t. the image?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts



Deconv approaches

1. Feed image into net

wl 300
Y # y—nst

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n
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Deconv approaches

1. Feed image into net

2. Pick a layer, set the gradient there to be all zero except for one 1 for
some neuron of interest
3. Backprop to image:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts



Deconv approaches

1. Feed image into net
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2. Pick a layer, set the gradient there to be all zero except for one 1 for

some neuron of interest “Guided
3. Backprop to image: backpropagation:”
only propagate

positive gradients

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n~ FYU YYD LY S
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Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass =T
Input image * — ¢ (> 1 r

Feature map

Backward pass
Reconstructed 0)0

-y R‘ = L >—<R.'-'>—- R'

. ) <
image R ol 2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| C‘_?'I‘ufts



Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass 1 ' b) 1|1]s 1
i g T o [ e = d |
Input image | f > = = f | Forward pass DR =
Feature map | 312)4 0
Backward pass
Reconstructed< = R"'}— oo ot | = 5] I .
Image &’ | Backward pass: %
| backpropagation 0 o]-3)1
———————————————————— I ol-1|3 1|3
€)  activation: I = relu(f!) = max(f!,0)
i [ ol {+1 l)j"”'
backpropagation: R, = (f; > 0) - R,”", where R'*! T
( L]
A

\ Backward pass for a ReLU (will be changed in Guided Backprop)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al G}Tufts



Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a) Forward pass =T: | b) 1[1]s 1
i d— LN - TE] -1 . I
Input image [* —{ f 5 ne 151! | Forward pass B =
Feature map | 3124 0
Backward pass P
Reconstructed = R‘-'l_ oo ot | = . .’
image & | Backward pass: %
| backpropagation 010 o) -3
———————————————————— I -1 1|3
<) activation: I = relu(f!) = max(f!,0) :
ion: ' [ 141 af |
backpropagation: R, = (f; > 0)- R™", where R{*' Tl
|
|
|
| Backward pass: 0 B -2 JiS -1
guided I _ /ol +1 guided 6lojJo| «<— |6]|-3]12
back tion: R =i >0)- R, ' back '
ackpropagation: | ackpropagation [543 21113

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @T\lfts



guided backpropagation corresponding image crops

Visualization of patterns
learned by the layer conv6
(top) and layer conv9
(bottom) of the network
trained on ImageNet.

Each row corresponds to
one filter.

The visualization using
“‘guided backpropagation” is
based on the top 10 image
patches activating this filter
taken from the ImageNet
dataset.

guided backpropagation

l i’—? 5l -"i';"
’ '. '
=19 RWA "‘ |

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmfts

— & 4 I, ) -
, (s

14



Deconv approaches

[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013]
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014]

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

a)

Forward pass

Input image [ —{ f* |+ _ﬂr--l >

f' |
|

Feature map |

L}

Reconstructed = : |
image R“ R‘ _— L _R‘ 1— R |
|

____________________ |
c) o 41 _ ootof £\ — ol £ O |
activation: i7" =relulf;) = max(f;,0) :
backpropagation: Rf = 'lf,“ >0) - R{'l. where R!*! i:j;ﬁ |
af;

backward i s '
deconvnet': ' |

. |
gU|ded 1{{ — :-!-‘.‘ < 0) - - I?H»l |

|

backpropagation:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

b) 11-1]5
Forward pass 215l
31214
-2 -1
Backward pass:
backpropagation 0]0
1
0)13]0
?ackward pfss: ol o B
deconvnet
0]3
Backward pass: 0 B
guided 0
backpropagation olo

comp150d| @'Ihfts

backprops
to weights
that were
zero-d out
by ReLu
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Visualizing and Understanding Convolutional Networks
Zeiler & Fergus, 2013

Visualizing arbitrary neurons along the way to the top...

Layer 2

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al @Tufts



Visualizing arbitrary neurons along the way to the top...

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| B.Ihfts



Visualizing
arbitrary
neurons along
the way to the
top...

Layer 4

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n




Optimization to Image
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Q. can we find an image that maximizes
some class score?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts
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Optimization to Image arg max|Se(I)|— All /3

score for class ¢ (before Softmax)
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Q: can we find an image that maximizes
some class score?

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al G}Tufts



Optimization to Image

1. feed in

uuuuuu

Zeros. N , | K .
Zero image > ]_:N" ™ ,: » n l’ et 1\ " ’l. I

14

A

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts



Optimization to Image

1. feed in
Zeros.

zero image L S

4 | ore

derie de-e
1 sense
e - > »
' 13
36 1000
Mae

pocing 8096 409

A

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image

3. do a small “image update”
4. forward the image through the network.
5. go back to 2.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_g’rufts

arg max

Se(1)
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score for class c (before Softmax)




Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

dumbbell dalmatian
bell pepper

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts

23



Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

..

washing machine computer keyboard kit fox
limousine

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts
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Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

2. Visualize the
Data gradient:

(note that the gradient on M ="
data has three channels.
Here they visualize M, s.t.:

]\Iij = Imax, |7Uh(z',j.c)|

(at each pixel take abs val, and max
over channels)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| C‘_?'I‘ufts
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Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

2. Visualize the
Data gradient:

(note that the gradient on
data has three channels.
Here they visualize M, s.t.:

AI’J = IMnax. Ifu""h.(i,j.(l)|

(at each pixel take abs val, and max
over channels)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d (_%rrllfts 26



Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

- Use grabcut for
segmentation

- This
optimization can
be done for
arbitrary
neurons in the
CNN

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_:’Il’ufts



Question: Given a CNN code, is it
possible to reconstruct the original
image”?

* Original slides borrowed from Andrej Karpathy 28
and Li Fei-Fei, Stanford cs231n comp150d (_}Mts



Understanding Deep Image Representations by Inverting Them
[Mahendran and Vedaldi, 2014]

Find an image such that:
- Its code is similar to a given code
- It “looks natural” (image prior regularization)

»

original image ' reconstructions
from the 1000
log probabilities
for ImageNet
(ILSVRC)
classes

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| @mfts 29



DeepDream https://github.com/google/deepdream

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts


https://github.com/google/deepdream

def objective L2(dst):
dst.diff[:] = dst.data

def make step(net, step size=1.5, end='inception 4c/output’,
jitter=32, clip=True, objective=objective L2):
'*'Basic gradient ascent step.'''

net.blobs['data']) # input image is stored in Net's 'data' blob
net.blobs[end]

src
dst

ox, oy = np.random.randint(-jitter, jitter+l, 2)
src.data[e] = np.roll(np.roll(src.data[@]), ox, -1), oy, -2) # apply jitter shift

net. forward(end=end)

objective(dst) # specify the optimization objective
net.backward(start=end)

g = src.diff[0]

# apply normalized ascent step to the input image
src.data[:) += step size/np.abs(g).mean() * g

src.data[@] = np.roll(np.roll(src.data[@], -ox, -1), -oy, -2) # unshift image
if clip:

bias = net.transformer.mean['data’']
src.data[:] = np.clip(src.data, -bias, 255-bias)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gmﬁs



def ‘ -
dst.diff[:] = dst.data

DeepDream: setdx =x:)

def make step(net, step size=1.5, end='inception 4c/output’,
jitter=32, clip=True, objective=objective L2):
''*'Basic gradient ascent step.'''

src
dst

net.blobs[end]

net.blobs['data') # input image is stored in Net's ‘data' blob

ox,

oy = np.random.randint(-jitter, jitter+l, 2)

-1), oy, -2) # apply jitter shift

src.datale] = np.roll(np.roll(src.data[e], ox,
net.forward(end=end)

objective(dst) # specify the optimization objective
net.backward(start=end)

g = SrC.OLTT[0]
# apply normalized ascent step to the input image
src.

data[:] += step size/np.abs(g).mean() * g

‘image update”

Jitter reqularizer

Src.

data[@] = np.roll(np.roll(src.data[@], -ox,

-1), -oy,

-2) # unshift image

if clip:

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

bias = net.transformer.mean|'data’']

src.data[:] = np.clip(src.data, -bias, 255-bias)

........
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inception_4c/output

DeepDream modifies the image in a way that “boosts” all activations, at any layer

this creates a feedback loop: e.g. any slightly detected dog face will be made more
and more dog like over time

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gm 53



inception_4c/output

:5%‘ ° fgm‘

"Admiral Dog!"

“The Pig-Snail" "The Camel-Bird"

ayc a vvay C JUU Ci

"The Dog-Fish"
vauorrs,acany layer

DeepDrea

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gm
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inception_3b/5x5_reduce

DeepDream modifies the image in a way that “boosts” all activations, at any layer

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d gm
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NeuralStyle

[ A Neural Algorithm of Artistic Style by Leon A. Gatys,
Alexander S. Ecker, and Matthias Bethge, 2015]
good implementation by Justin in Torch:
https://github.com/jcjohnson/neural-style

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts
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https://github.com/jcjohnson/neural-style

We can pose an optimization over the input image
to maximize any class score.
That seems useful.

Question: Can we use this to “fool” ConvNets?

* Original slides borrowed from Andrej Karpathy n
and Li Fei-Fei, Stanford cs231n comp150d C.V'I‘llfts



[Intriguing properties of neural networks, Szegedy et al., 2013]

correct +distort correct

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gmfts

+distort

ostrich

38



[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images
Nguyen, Yosinski, Clune, 2014]

>99.6% ...

confidences | robin ” cheetah " armadillo || lesser panda |

centipede peacock jackfruit bubble

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gm
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These kinds of results were around even before ConvNets...
[Exploring the Representation Capabilities of the HOG Descriptor, Tatu et al., 2011]

Identical HOG represention

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl c_srrufts
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EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES
[Goodfellow, Shlens & Szegedy, 2014]

“orimary cause of neural networks’ vulnerability to adversarial
perturbation is their linear nature”

* Original slides borrowed from Andrej Karpathy o
and Li Fei-Fei, Stanford cs231n comp150d ‘-VTufts
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Lets fool a binary linear classifier:

P(y=1|=z;w,b) =

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl (_}T‘“fts

4_

input example

<— weights

1

l+e

(wlz4b)

— O'(U»‘T.’l) -+ b)

42



Lets fool a binary linear classifier:

X |2 |- |3 |2 |2 |2 |1 |-4 |5 |1 <«— input example

w [T A |1 1|1 1 -1 <— weights

class 1 score = dot product:
=2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474

I.e. the classifier is 95% certain that this is class 0 example.

1

P(y=1|z;w,b) = =

=g(w'z +b)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d f}TuftS 43



Lets fool a binary linear classifier:

X (2 |3 2 42 2 1 4 s I e input example
w [T A |1 1|1 1 -1 <— weights
' o 2 2 2 ? ? ? ? ? ?
adversarial x

class 1 score = dot product:
=2+1+3+2+2-2+1-4-5+1=-3

=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474

I.e. the classifier is 95% certain that this is class 0 example.

1
1 + e~ (w'z+b)

Ply=1|z;w,b) = = o(w 'z + b)

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d (_%rrllfts 44



Lets fool a binary linear classifier:

X 2 -1 3 -2 2 2 1 -4 5 1

w -1 -1 1 -1 1 -1 1 1 -1 1

) 15 |-15 | 35 25 |25 1.5 15 | -35 |45 1.5
adversarial x

class 1 score before:
2+1+3+2+2-2+1-4-5+1=-3
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474

<— |jnput example

<— weights

=1|z;w,b) = . =o(w'z
15+1.6+3.6v2.5+2.5-1.56+1.5-3.6-4.6+1.5= 2 Ply=1|mm;8) = ey —o( o)

=> probability of class 1 is now 1/(1+e”(-(2))) = 0.88
i.e. we improved the class 1 probability from 5% to 88%

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| (_%rrllfts
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Lets fool a binary linear classifier:

<— |jnput example

<— weights

X 2 -1 3 -2 2 2 1 4 S} 1
w -1 -1 1 -1 1 1 1 1 -1 1
15 |15 (35 |-25 |25 (15 |15 |-35 |45 |15

adversarial x

class 1 score before:

2+1+3+2+2-2+1-4-5+1=-3
=> probability of class 1 is 1/(1+e”(-(-3))) = 0.0474

-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2

=> probability of class 1 is now 1/(1+e”(-(2))) = 0.88

i.e. we improved the class 1 probability from 5% to 88%

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150dl! f_:}'rufts

This was only with 10 input
dimensions. A 224x224 input
image has 150,528.

(It’s significantly easier with
more numbers, need smaller
nudge for each)

46



Andrej Karpathy Blog post: Breaking Linear Classifiers on ImageNet

reermrsomercosre 1 1 I I R I

ImageNet classifiers:

't

French loaf

3 ! bagel et
t ' ¢ lolly - cheescburger
;\lbhcm squa
batternut squuh Cardoo : ‘

book jacket

chocolm

k'ugh

meat koaf od wine

. . ' F

J . - "‘ ~-‘us
i

i

h;:l;‘ 1yer : vellow lady's \|1w
groom L ' *
. tuba diver K
» T .. ' -

volcano

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150al gm
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* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

mix in a tiny bit of
Goldfish classifier weights

..........

100.0% goldfish

100% Goldfish

48



1.0% kit fox

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150dl gm 49



Recurrent Neural Networks

comp150d| (_’}'Ihfts
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many

\ Vanilla Neural Networks

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts

many to many
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many

w
\ e.g. Image Captioning
image -> sequence of words

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp1sodl €9 Tufts

many to many
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many
! Pt 1 ! P t 1
! ! Pt 1 Pt 1

w
\ e.g. Sentiment Classification
sequence of words -> sentiment

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @m

many to many
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many

A
\ e.g. Machine Translation

seq of words -> seq of words

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp1sodl €9 Tufts
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Recurrent Networks offer a lot of flexibility:

one to one one to many many to one many to many many to many

y

e.g. Video classification on frame level

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts
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Recurrent Networks

®)
]
A

6

Recurrent Neural Networks have loops.

* figure courtesy Chris Olah compisodl €3 Tufts
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RNN - at each time step

® oo o

fW —> > > fW

6 §38 &

An unrolled recurrent neural network.

Notice: the same
h —_— h function and the same
tl— W t—1b £ i set of parameters are

used at every time step.
new state ~old state
some function

with parameters W
* Original slides borrowed from Andrej Karpathy * £ :
and Li Fei-FoiStanford cs231n comp150d! 3 Tufts figure courtesy Chris Olah 57




(Vanilla) Recurrent Neural Network

The state consists of a single “hidden” vector h:

CfT\) hy = fW(ht—la ﬂft)
L 7 |

g) h, = tanh(Wp,hy 1 + Wopxy)
Y = Whyht

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| C‘_?'I‘ufts 58



Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| {(:‘}Thfts

fw
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

input layer

=

input chars: “h"

comp150d| f}Tufts

L
o loo=0

“ o000

==
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

he = tanh(Winhe_1 + Wonet)

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
Mh”

comp150dI ((-Q'I’ufts

0.1

-0.3

< |lo=00O

W_hh
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Character-level
language model
example

Vocabulary:
[h,e,l,0]

Example training
sequence:
“hello”

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

target chars:

output layer

hidden layer

input layer

input chars:

0.3
-0.1
0.9

1
0
0
0
uh"

comp150d| G'Ihfts

¥
o loo=0

W_hh
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min-char-rnn.py gist: 112 lines of Python

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

comp150d| @'Ihfts

»»»»»

W

(https://qist.github.com/karpathy/
d4dee566867f8291f086)
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Data I/O

fi[saapne

TR

¢l TRRL; §35

"tf:f‘“'” 2 Minimal character-level Vanilla RNN model. written by Andrej Karpathy (@karpathy)
e St ittt 7 BSD License

i M man
.

5 import numpy as np

S 7 # data I/0
S 5 data = open('input.txt', 'r').read() # should be simple plain text file
o chars = list(set(data))
10 data_size, vocab_size = len(data), len(chars)
11 print 'data has %d characters, %d unique.' % (data_size, vocab_size)
12 char_to_ix = { ch:i for i,ch in enumerate(chars) }
ix_to_char = { 1:ch for 1,ch in enumerate(chars) }

n Andrej Karpathy
i compisodl €3 Tufts
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n-char-rnn.py gist

L T ——p——

iif
{

¢ 1 1[TF888
14340

’
£

;'i'

irspepregeeiltlin

N

n Andrej Karpathy
1n

Initializations

# hyperparameters

hidden_size = 100 # size of hidden layer of neurons
seq_length = 25 # number of steps to unroll the RNN for
learning_rate = 1e-1

# model parameters

wWxh = np.random.randn(hidden_size, vocab_size)*0.61 # input to hidden
whh = np.random.randn(hidden_size, hidden_size)*6.81 # hidden to hidden
why = np.random.randn(vocab_size, hidden_size)*0.61 # hidden to output
bh = np.zeros((hidden_size, 1)) # hidden bias

by = np.zeros((vocab_size, 1)) # output bias

target chars: ‘“e" T L o) “o"
10 05 01 02
22 03 0.5 -1.5
Utputleyer (e 1.0 19 01
4.1 12 A1 22
] T T TW-'W
. 03 10 0.1 03
reca”. hidden layer | -0.1 03 EsW_hh i
0.9 0.1 03 07
I I I T
1 0 0 )
i 0 1 0 0
input layer 0 0 : :
0 0 0 0

=
]
=
e,
-
]
-
s

comp150dI emﬁs input chars:
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n-char-rnn.py gist

) nas s rr ] ool - iy A gy W
e

T - .-

'L

e e o U et e R
N L T L -

nA

ndrej Karpathy

1n

P T T T T

Main loop

n,p=9,0
wiwxh, mWhh, swhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) = memory variables for Adagrad
smooth_loss = -np.log(1.8/vocab_size)*seq length # loss at iteration @
while True:
¥ prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seq_length+1 >= len(data) or n == 6:
hprev = np.zeros((hidden_size, 1)) # reset ANN menmory
p=90wgo from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq _length+1]]

# sample from the model now and then

if n X 100 == @:
sample_ix = sample(hprev, inputs[e], 200)
txt = "' _join(ix_to_char[ix] for ix in sample_ix)
print 's-«-\n %s \n----" % (txt, )

# forward seq_length characters through the net and fetch gradient

loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)
smooth_loss = smooth_loss * ©.999 + loss * ©.801

if n X 198 == @: print ‘iter %d, loss: %f' %X (n, smooth_loss) # print progress

# perform parameter update with Adagrad
for param, dparam, mem in zip([wxh, whh, why,K bh, by],
[dwxh, dwhh, dwhy, dbh, dby],
[wWixh, mWhh, swWhy, mbh, mby]):
mem += dparam * dparam
param += -learning_rate * dparam / np.sqrt(mem + 1e-8) ¢ adagrad update

p += seq_length » move data pointer
N 45 1 ¥ iteration counter


https://gist.github.com/karpathy/d4dee566867f8291f086
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n-char-rnn.py gist Main loop

n, p=896,89
wiwxh, mWhh, swhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) = memory variables for Adagrad
smooth_loss = -np.log(1.8/vocab_size)*seq length # loss at iteration @

£5  while True:

# prepare inputs (we're sweeping Trom left to right in steps seq_length long)
if p+seq_length+1 >= len(data) or n == @§:
hprev = np.zeros((hidden_size,1)) # reset RNN memory
89 p =90 # go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq _length+1]]

# sample from the model now and then
if n %X 100 == @:
' sample_ix = sample(hprev, inputs[o], 200)
:"“:‘;'T"‘ o e wn sy txt = "' join(ix_to_char[ix] for ix in sample_ix)
O 97 print 's---\n %s \n----" % (txt, )

2

99 # forward seq_length characters through the net and fetch gradient

1 loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

161 smooth_loss = smooth_loss * ©.999 + loss * 8.801

162 if n %X 108 == 0: print "iter %d, loss: %f' X (n, smooth_loss) # print progress

164 # perform parameter update with Adagrad

16% for param, dparam, mem in zip([wxh, whh, why, bh, by],

184 lmn dwhh, dwhy, dbh, del.

107 [wWxh, mWhh, sWhy, msbh, mby]):

108 mem += dparam * dparam

9 param += -learning_rate * dparam / np.sqrt(mem + 1e-8) ¢ adagrad update

n Andrej Karpathy 111 p += seq_length » move data pointer
1n 112 N+ 1 # iteration counter
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n-char-rnn.py gist Main loop

n,p=29,0
wiwxh, mWhh, swhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) = memory variables for Adagrad
smooth_loss = -np.log(1.8/vocab_size)*seq length # loss at iteration @
£5  while True:
¥ prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seq_length+1 >= len(data) or n == 6:
hprev = np.zeros((hidden_size, 1)) # reset ANN menmory
89 p=0#go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then

if n % 100 == @:

: sample_ix = sample(hprev, inputsfe], 200)

N 57 e S e e txt = ''_join(ix_to_char[ix] for ix in sample_ix)
‘ print ‘««+-\n %s \n----" % (txt, )

2

99 # forward seq_length characters through the net and fetch gradient

1 loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

161 smooth_loss = smooth_loss * ©.999 + loss * 8.801

162 if n %X 108 == 0: print "iter %d, loss: %f' X (n, smooth_loss) # print progress

164 # perform parameter update with Adagrad

16% for param, dparam, mem in zip([wxh, whh, why, bh, by],

184 lmn dwhh, dwhy, dbh, del.

107 [wWxh, mWhh, sWhy, msbh, mby]):

108 mem += dparam * dparam

9 param += -learning_rate * dparam / np.sqrt(mem + 1e-8) ¢ adagrad update

n Andrej Karpathy 111 p += seq_length » move data pointer
1n 112 N+ 1 # iteration counter
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n-char-rnn.py gist Main loop

n,p=29,0
wiwxh, mWhh, swhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) = memory variables for Adagrad
smooth_loss = -np.log(1.8/vocab_size)*seq length # loss at iteration @
£5  while True:
¥ prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seq_length+1 >= len(data) or n == 6:
hprev = np.zeros((hidden_size, 1)) # reset ANN menmory
89 p=0#go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then
if n %X 100 == @:
' sample_ix = sample(hprev, inputs[o], 200)
:"“:‘;'T"‘ o e wn sy txt = "' join(ix_to_char[ix] for ix in sample_ix)
O 97 print 's---\n %s \n----" % (txt, )

2

94 # Torward seq_length characters through the net and fetch gradient

1 loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

161 smooth_loss = smooth_loss * ©.999 + loss * ©.801

162 Af n X 108 == @: print ‘iter %d, loss: %f' %X (n, smooth_loss) # print progress

164 # perform parameter update with Adagrad

16% for param, dparam, mem in zip([wxh, whh, why, bh, by],

184 lmn dwhh, dwhy, dbh, del.

107 [wWxh, mWhh, sWhy, msbh, mby]):

108 mem += dparam * dparam

9 param += -learning_rate * dparam / np.sqrt(mem + 1e-8) ¢ adagrad update

n Andrej Karpathy 111 p += seq_length » move data pointer
1n 112 N+ 1 # iteration counter
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n-char-rnn.py gist Main loop

n,p=29,0
wiwxh, mWhh, swhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
mbh, mby = np.zeros_like(bh), np.zeros_like(by) = memory variables for Adagrad
smooth_loss = -np.log(1.8/vocab_size)*seq length # loss at iteration @
£5  while True:
¥ prepare inputs (we're sweeping from left to right in steps seq_length long)
if p+seq_length+1 >= len(data) or n == 6:
hprev = np.zeros((hidden_size, 1)) # reset ANN menmory
89 p=0#go from start of data
inputs = [char_to_ix[ch] for ch in data[p:p+seq_length]]
targets = [char_to_ix[ch] for ch in data[p+1:p+seq_length+1]]

# sample from the model now and then
if n %X 100 == @:
' sample_ix = sample(hprev, inputs[o], 200)
:"“:‘;'T"‘ o e wn sy txt = "' join(ix_to_char[ix] for ix in sample_ix)
O 97 print 's---\n %s \n----" % (txt, )

2

99 # forward seq_length characters through the net and fetch gradient

1 loss, dwxh, dwhh, dwhy, dbh, dby, hprev = lossFun(inputs, targets, hprev)

161 smooth_loss = smooth_loss * ©.999 + loss * 8.801

162 if n %X 108 == 0: print "iter %d, loss: %f' X (n, smooth_loss) # print progress

104 # perform parameter update with Adagrad

16% for param, dparam, mem in zip([wxh, whh, why,K bh, by],

10¢ [dwxh, dwhh, dwhy, dbh, dby],

107 [wxh, mWhh, swhy, mbh, mby]):

108 mem += dparam * dparam

9 param += -learning_rate * dparam / np.sqrt(mem + 1e-8) # adagrad update

n Andrej Karpathy 111 p += seq_length » move data pointer
1n 112 N+ 1 # iteration counter
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n-char-rnn.py gist Loss function

- forward pass (compute loss)
- backward pass (compute param gradient)

Sef loasFun{inputs, targets, hprev):

- -y "

ispets, targets are Both list of integers.

hprev 1s Ml array of initial hiodes state

reterns the loss, gragients on sodel paraseters, and last hidden state
xs, by, y», 5 = (L (O O O)

e hs{-1] = np.copy(hprev)

i - - ' loss = 0
i # Torward pass

v Biutind, w.avwn.Mishiy for ¢ in xrasge(len(isputs)):
X$[C) = np.zeros{(vecad_size, 1)) » encode in 1.0 k representation
xs[t){amputs(t]) =
hs[t) = np.tanh(ng. ot (weh, wxs[t]) « sp.dot(whh, As[t-1]) * Bh) » hidsen state
ys[t] = np.dot(Why, hs[t]) ¢ by » usnorsalized log probabilities for sext chars
psit]) = np.eaplys[t]) 7/ mp.sem{np.exp(ys[t])) » prosablliitios for next chars
loss *= -np. log(psit)itargets[t).@])) * scftmax [(cross-entropy loss)
* Dachward pass oepule gradients going backwar
Guixh, Wihh, SWty ¢ sp.reros _like(Wxh), sp.zeros _like{whh), np. zeros_like(why)
ash, by = np.2eros_like(bh), fp.2eros_like(dy)
aanext = np.zeros like(ns(e))
for t An reversed(xrange(len(inputs))):
dy = rp.copy(ps[t])
dy[targets[t]]) -= 1 » backy nto y
dvhy += ap.dot(dy, Ms[t].T)
aby o= Oy
dh = rp.dot(vhy.T, @y) * dhnext ¥ backprop isto h
Owasw = (1 - RS[T) * BS(L)) * @N » Backprop through Tanh nenlleesrily
ash + Ovwaw
Owixh +« np.dot(dhraw, xs[t).Y)
owhh += ap.dot(ahram, hsft-1].7)
dwnext = np. Gt (Whh. T, dwaw)
for dparam in [OWxh, @whh, dwhy, dbs, dby):
n Andrej Karpathy np.clip(dparam, -5, 5, owt=dparam)

. 1 cor retern loss, ducxh, dwhh, detry, dbh, dby, hl(.ar—(inpatl) l]
Hhpr=t n TR xaraEsLy

1¥s881

" 'v7:¥!( ya3zaaiqd
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n-char-rnn.py_ gist |

der loss

nan

xs, hs,

loss = ©

Fun(inputs,

targets, hprev):

inputs, targets are both 1ist of integers.
hprev 1s Hx1 array of initial hidden state
returns the loss,

gradients on model parameters, and last hidden state

ys, ps = {} {}. {3, O

hs[-1] = np.copy(hprev)

for t in xrange(len(inputs)):

xs[t] = np.rorn:((vocnb size, 1)) en i@ in 1-0f -k repre
xs[t][inputs[t]]) =
hs[t] = np.tanh(np. dot(wxh, xs(t]) + np. dot(whh hs(t 1)) ¢ bh)

| ys[t] = np.dot(why, hs[t]) + by : \ ] | il ror
ps(t] = np.exp(ys(t]) / np.sum(np. eXD(YS(U)) probabiliti for next
loss += -np.log(ps[t])[targets[t],e]) ross-entr

/

Yt Why hy

n Andrej Karpathy

tanh(Wihy—1 + Wy y)

Softmax classifier

n ' comp150d| gmfts

.........
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h ist 14 # backward pass: compute gradients going backwards
W,.- ' dwxh, dwhh, dwhy = np.zeros_like(wxh), np.zeros_like(whh), np.zeros_like(why)
: dbh, dby = np.zeros_like(bh), np.zeros_like(by)
dhnext = np.zeros_like(hs[0])
for t in reversed(xrange(len(inputs))):
dy = np.copy(ps[t])
dy[targets[t]] -= 1 # backprop into y
dwhy += np.dot(dy, hs[t].T)
dby += dy
dh = np.dot(why.T, dy) + dhnext # backprop into h
dhraw = (1 - hs[t] * hs[t]) * dh # backprop through tanh nonlinearity

dbh += dhraw
| @wxh += np.dot(dhraw, xs[t].T)
- . A dwhh += np.dot(dhraw, hs[t-1].T)
”/’,,f"' : dhnext = np.dot(whh.T, dhraw)

for dparam in [dwxh, dwhh, dwhy, dbh, dby]:
np.clip(dparam, -5, 5, out=dparam) # clip to mitigate exploding gradients
return loss, dwxh, dwhh, dwhy, dbh, dby, hs[len(inputs)-1]

target chars: ‘e" X i p “o"
10 05 01 02
22 03 05 15
outputlayer i 1.0 1.9 01
4.1 12 1.4 22
[ I R
03 10 01 |w nnl 03
. hidden layer | 0.1 03 05 |-+ 09
recall: Bl b
R I A
1 0 0 0
. 0 1 0 0
input layer 0 0 1 1
0 0 0 0
e = s

comp1s00 (3 Tufts e
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n-char-rnn.py gist

- ) el Ty A Sp— d——-—

63 def sample(h, seed_ix, n):
65 sample a sequence of integers from the model
66 h is memory state, seed_ix is seed letter for first time step
68 X = np.zeros((vocab_size, 1))
69 x[seed_ix] = 1
70 ixes = []
1 for t in xrange(n):
h = np.tanh(np.dot(wWxh, x) + np.dot(whh, h) + bh)
y = np.dot(why, h) + by
p = np.exp(y) / np.sum(np.exp(y))
ix = np.random.choice(range(vocab_size), p=p.ravel())
X = np.zeros((vocab_size, 1))
x[ix] = 1
78 ixes.append(ix)
79 return ixes

n Andrej Karpathy
i compisodl €3 Tufts
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Sonnet 116 - Let me not ...
by William Shakespeare

Let me not to the marriage of true minds
Admit impediments. Love is not love
Which alters when it alteration finds,
Or bends with the remover to remove:
O no! it is an ever-fixed mark
That looks on tempests and is never shaken;
It is the star to every wandering bark,

Whose worth's unknown, although his height be taken.

Love's not Time's fool, though rosy lips and cheeks
Within his bending sickle's compass come:
Love alters not with his brief hours and weeks,
But bears it out even to the edge of doom.
If this be error and upon me proved,
| never writ, nor no man ever loved.

* Original slides borrowed from Andrej Karpathy comp150d| gm

and Li Fei-Fei, Stanford cs231n

..........
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t fi t: tyntd-iafhatawiaoihrdemot 1lytdws e ,tfti, astai f ogoh eoase rrranbyne 'nhthnee e
at 1irst: plia tklrgd t o idoe ns,smtt h ne etie h,hregtrs nigtike,aoaenns lng

l train more

“Tmont thithey" fomesscerliund

Keushey. Thom here
sheulke, anmerenith ol sivh I lalterthend Bleipile shuwy fil on aseterlome

coaniogennc Phe lism thond hon at. MeiDimorotion in ther thize."

l train more

Aftair fall unsuch that the hall for Prince Velzonski's that me of
her hearly, and behs to so arwage fiving were to it beloge, pavu say falling misfort

how, and Gogition is so overelical and ofter.

l train more
"Why do what that day," replied Natasha, and wishing to himself the fact the

princess, Princess Mary was easier, fed in had oftened him.
Pierre aking his soul came to the packs and drove up his father-in-law women.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d B.Ihfts
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PANDARUS : VIOLA:

Alas, I think he shall be come approached and the day Why, Salisbury must find his flesh and thought
When little srain would be attain'd into being never fed, That which I am not aps, not a man and in fire,
And who is but a chain and subjects of his death, To show the reiniang of the raven and the wars
I should not sleep. To grace my hand reproach within, and not a fair are hand,
That Caesar and my goodly father's world;
Second Senator: When I was heaven of presence and our fleets,
They are away this miseries, produced upon my soul, We spare with hours, but cut thy council I am great,
Breaking and strongly should be buried, when I perish Murdered and by thy master’'s ready there
The earth and thoughts of many states. My power to give thee but so much as hell:
Some service in the noble bondman here,
DUKE VINCENTIO: Would show him to her wine.
Well, your wit is in the care of side and that.
KING LEAR:
Second Lord: 0, if you were a feeble sight, the courtesy of your law,
They would be ruled after this chamber, and Your sight and several breath, will wear the gods
my fair nues begun out of the fact, to be conveyed, With his heads, and my hands are wonder'd at the deeds,
Whose noble souls I'll have the heart of the wars. So drop upon your lordship’s head, and your opinion

Shall be againat your honour.

Clown:
Come, sir, I will make did behold your worship.

VIOLA:
I'll drink it.

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gm



open source textbook on algebraic geometry

@ The Stacks Project

Browse chapters

Part Chapter

Preliminaries
1. Introduction
2. Conventions
3. Set Theory
4. Categories
5. Topology
6. Sheaves on Spaces
7. Sites and Sheaves
8. Stacks

9. Fields

10. Commutative Algebra

online TeX source view pdf

online
online

1ex()
1ex0)
tex0)
1ex)
tex0)
1ex()
1ex0)
1ex0)
1ex0)
tex0)

-4

-1

b
p =Y
-~

home about tagsexplained taglookup browse search bibliography recentcomments blog add slogans

Parts

. Preliminaries

. Schemes

. Topics in Scheme Theory
Algebraic Spaces

: Ioplcsmﬁeomeuy

. Algebraic Stacks
. Miscellany

Statistics

N DEWN -

The Stacks project now consists of

o 455910 lines of code
o 14221 tags (56 inactive tags)
o 2366 sections

L atex source

* Original slides borrowed from Andrej Karpathy
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* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n

For @, ., Where £, w0, bence we can ind a elosed subset H 1n H and
any sets Fon X, U s o closed lmmersion of S, then U < 7' Is o separatod algebense
space.

Proof Proof of (1). It abso start we got

S=Spe(R)=Uxx Uxx U
and the comparicoly in the fibre prodect coveriag wo have to provo the lomma
generated by [[Z xp U« V. Consider the maps M along the sot of peints
Schyppy and U < U i the fibre category of S in U in Section, 77 and the fact that
any U affine. see Morphisms, Lemma 77, Hence we obtain a scheme S and any
opens slsct W C U i SMG) sisch that Spec{ B7) = S bs smooth or an

U=|JUixg U

which bhas o noazero morphisen we may assume that [, is of finite presentation over
S. Wo claitn that Oy, is a scheme where 7,27, #" € §* wach that Ox - - Q). . s
scparated. By Algebea, Lemama 77 we can dofine a map of complexes GL g (2"/S™)
and we win 0
To prove study we oo that Flg is a covering of A%, and T, s an objoct of Fxx for
£ > 0and ¥, exists and bt F, be a proshoaf of Ox-modudes on € as a Fomodube,
In particular F = U/F we have to show that

At -r%—(‘-)oh-ii'n

is & unique morphisie of algebaaic stacks. Note that
Arvows = (Sch/S) 0 . (SA/S)gppr

and

Vo [(8,0) wr (U Spec(A))
is an open subset of X. Thus U is affine. This is a continmous map of X is the
imverse, the groupoid scheme S,
Proof See discussion of shewves of sets, (")

The vesult for prove any open covering follows from the Jess of Example 27, It may

replace S by X srate Which gives an open sutspace of X amd T equal to Sz,

sov Descest, Lensmn 77, Nusely, by Lotssna 77 we soe that R s gossnetrically
|_regular over S,

Lemma 0.1. Asswme (3) and (3) by the construction in the description.
Suppose X = lim |.X| (by the formal open covering X and @ single map Proj (A) =
Spec{ B) over U compatible wath the complex
SetiA) = T'(X,Ox.0,)

When in this case of to show that Q —» Cyyx is stabdle under the following resvit
in the second conditions of (1), and (3). This finishes the proof. By Definition 727
(without clement is when the closed subschemes are catenary. If T s swrjective we
may assurme that T i conmected with residae fickds of S, Morvower there exists o
closed subspace Z C X of X where U in X' is proper (some defining as a closed
subset of the unigueness it suffices fto check the foct that the fellowing theoremn

(1) [ & lecally of finite type. Since S = Spocd R) and Y = Spec(R).
Proof. This is form all sheaves of sheaves on X, But given o schemne U and o

surjoctive dale merphism U - X. Lt UNU =[], U be the scheme X over
S at the schemes X, =+ X and U = by, X, 0O

The follewlag Jlesnma sugfoctive restrocomposes of this implics that F, = F, =
Fx...00

Lemma 0.2. Let X be a locolly Noctherion scheme over S, E = Fy5. St I =
Ji C T, Since T° C I™ are nonzero over ip < p is & suhaet of T, 00 Ay works,
Lemma 0.3, In Sitsation 77, Henee we may assume ¢’ =0,

Proof. We will use the property we see that p Is the mext functor (77). On the
other hand, by Lemisa 77 wo soo that

DOy )= Ox(D)
where K is an Fealgebra where 4, ., is a scheme over S, 0o

comp150dl| g'l\lﬂs
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Preof. Omitted. 0

Lemma 0.1, Let C be a set of the construction.

Let C ke a gerber covering. Let F be a quasi-coherent sheaves of O-modules, We
have to show thet
Oo, = Oxl(£)

Proof. This is an algebraie space with the compasition of sheaves F on Xy, we
have

Ox(F) = {morphy xo0, (G.F)}
where § defines an isomorphism F < F of O-modules. 0
Lemma 0.2, This is an integer 2 1s mjective.
Preof. Sce Spaces, Lemma 77, 0

Lemma 0.3. Let S be a scheme. Let X be a scheme and X is an affine open
covering. Let i € X be a canonical and locally of finite type. Let X be a scheme.
Let X be a scheme which is equal to the formal comples.

The following to the construction of the lemma follows.
Let X be a scheme. Let X be a scheme covering. Let
b: X2Y a2YaYaY xxY = X.

be a morphism of algebruic spaces over S and Y.
Proof. Lat X be a nonzero schomo of X, Lot X be an algebraic space, Lot F bo a
quasi-colierent sheaf of Ox-modules. The following are equivadent

(1) F is an algebraic space over S,

(2) If X i an affine open covering.

Consbder a comumon structure on X and X the functor Ox (U) which is locally of
finite type, (®

This since F € F andd 7 €  the diagraea
S

|

{ et O

e

.“’—

- — X

MN.' Mot gare ‘(OX.,‘ -G’

i a limit. Then € is » finkte type and semme S is a flst and 7 and € & & Bmite
type fo. This s of finkte type dagrams, and
* ke componition of § s & regellar soguonce,
o Oy is a shead of rings.
&)

Proof. We have soe that X« Spec(K) and F is a fiite type repoesestable by
algebaale space. The gooperty J is & fadte morpdilsin of algebenic stacks. Then the
coboasology of X s an open seighbourbood of I, =)

Proof. This is close that § is o finite peosentation, se Lemmas 77,
A redwond above we conclade that U ix an open covering of €. The functer F s a
e

Oxs =+ Fr MOx, . = OF0x.(0%,)
is am somorphisan of covering of Ox,. 1 F s the unigee element of J such that X
Is an bossorpddsin.
The geoperty F s a dis) ks of Progosition 77 smd wo cam Sltosnd st of

peesestativns of a sehesse Oy-algelen with 5 are opens of fishte type over S.
M F & aschosme thourctic Snage ponts. &)

I F is & lsite divect sum Oy, bs & dosod lnensbon, soe Letssa 77, This & &
soqquence of F s o slimilar morphiem,

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n
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Linux kernel source tree
o
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[ RN Lnrmn hursmnein Yor e’ ol sib-Ale L 1 e e i e M ou Mo rrend B )
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static void do_command(struct seq file *m, void *v)
{
int column = 32 << (cmd[2)] & 0x80);
if (state)
cmd = (int)(int_state * (in_8(&ch->ch_flags) & Cmd) 2?2 2 : 1);
else
seq = 1;
for (i = 0; i < 16; i++) {
if (k & (1 << 1))
pipe = (in_use & UMXTHREAD UNCCA) +
((count & O0x00000000£££££££8) & 0x000000f) << 8;
if (count == ()
sub(pid, ppc_md.kexec_handle, 0x20000000);
pipe_set bytes(i, 0);
}
/* Free our user pages pointer to place camera if all dash */
subsystem info = &of changes[PAGE_SIZE];
rek controls(offset, idx, &soffset);
/* Now we want to deliberately put it to device */
control check polarity(&context, val, 0);
for (i = 0; i < COUNTER; i++)
seq_puts(s, "policy ");

}
* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| B.Ihfts
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Copyright (c) 2006-2010, Intel Mobile Communications. All rights reserved.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU General Public Licease version 2 as published by
the Free Software Foundation.

-

-

.

.

-

-

. This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of

*  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

-
.
-
-
-
-

GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 675 Mass Ave, Cambridge, MA 02139, USA.

finclude <linux/kexec.h>

finclude <linux/errmo.h>

finclude <linux/io.h>

finclude <linux/platform device.h>
finclude <linux/multi.h>

finclude <linux/ckevent.h>

finclude <asm/io.h>

finclude <asa/prom.h>
finclude <asm/e820.h>
finclude <asm/system_info.h>
finclude <asm/setew.h>
finclude <asm/pgproto.h>

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisod! €3 Tufts
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finclude <asm/io.h>

finclude <asm/prom.h>
finclude <asm/e820.h>
finclude <asm/system_info.h>
finclude <asm/setew.h>
finclude <asm/pgproto.h>

fdefine REG_PG vesa_slot_addr_pack
fdefine PFN_NOCOMP AFSR(0, load)
f#define STACK_DDR(type) (func)

#define SWAP_ALLOCATE(nr) (e)

fdefine emulate_sigs() arch get unaligned child()

fdefine access_rw(TST) asm volatile("movd t%esp, %0, %3 : : "r" (0));
if (__type & DO_READ)

static void stat_PC_SEC _ read mostly offsetof(struct seq argsqueue, \
pC>(1]);

static void
os_prefix(unsigned long sys)
{

fifdef CONFIG_PREEMPT

PUT_PARAM RAID(2, sel) = get state_state();
set_pid sum((unsigned long)state, current state_str(),
(unsigned long)-1->1r full; low;

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di gmﬁs
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Recommended Reading:
Visualizing and Understanding Recurrent Networks

N 'H tltm-e' ld"SMsit ring Fe@pres@ntation firom WSer -space
e
- HEd 1t pack_string(¥@lid *®Mbufp, size_t MrEmEin, s@ze_t lem)
* f

[Visualizing and Understanding Recurrent Networks, Andrej Karpathy®, Justin Johnson*, Li Fei-Fei]

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gm g6



Image Captioning

“straw” “hat” END

START “straw” “hat”

Explain Images with Multimodal Recurrent Neural Networks, Mao et al.
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei
Show and Tell: A Neural Image Caption Generator, Vinyals et al.

Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al.

Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n compisodl €9 Tufts
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Recurrent Neural Network

“straw” “hat” END
Yt

4! "’o 1
""’fh h ’

h t
Wha
't

START “straw” “hat”

Convolutional Neural Network

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d| gllhfts
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test image

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150di B.Ihfts



test image
conv-64
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test image

y0
T before:
h = tanh(Wxh * x + Whh * h)
' hO
Wih

T nNOow.
h = tanh(Wxh * x + Whh * h + Wih * v)

~ved from Andrej Karpath
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test image
conv-64

conv-64

conv-128
conv-128

__conv-256 y1 y2
35 i wlly \ sample
g I <END> token

e ho | h1 [—p| h2 => finish.
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Image Sentence Datasets

a man riding a bike on a dirt path through a forest.
bicydlist raises his fist as he rides on desert dirt trail.

& e g 8 el s sorobO o B B Microsoft COCO

a mountain b'kor hls.ﬁsl in .celebrabon. . .

Y ' [Tsung-Yi Lin et al. 2014]
MSCOCO.0rg

currently:
~120K images
~5 sentences each
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http://mscoco.org

‘man in black shirt is playing ‘construction worker in orange "two young girls are playing with "boy is doing backflip on

guitar.” safety vest is working on road.’ lego toy. wakeboard
* Original slides borrowed from Andrej Karpathy
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Preview of fancier architectures

RNN attends spatially to different parts of images while generating
each word of the sentence:

14x14 Feature Map

lA

ird |
flying
over

a
body
of
water
1.Input 2. Convolutional 3. RNN with attention 4. Word by
Image Feature Extraction over the image word
generationJ

Show Attend and Tell, Xu et al., 2015

* Original slides borrowed from Andrej Karpathy
and Li Fei-Fei, Stanford cs231n comp150d @mfts




4-dir 4-dir | context
convl conv2 conv3d conv4 convd conv/ RNN  RNN | features

14 14 14

ROI Pooling
i e  sotima
. s — o[ —[ <
L2 normalize /sc; i 1x1 fc U fc U¢ I] bbox
concat conv For each ROI

“ slide courtesy Sean Bell Base ConvNet: VGG16 [Simonyan 2014)



Limitations of RNNSs




Long Short Term Memory Networks

T |

The repeating module n a standard IRNN comalos a single layer @ @ @

The repeating module in an LSTM contains four interacting layers.

* figures courtesy Chris Olah compisod! €3 Tufts 105
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RNN:
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hi = 0 ® tanh(c})

time

* Original slides borrowed from Andrej Karpathy
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LSTM: Cell State

long running memory of the network

C C

t—1 C : I

* figures courtesy Chris Olah comp150d €9 Tufts 107



LSTM: Forget Gate f

,f\ B lsigm\ W (’llg_l)

l
hi—

l ~ A
¢y =fOc

ft =0 (Wg-[hi—1,2¢] + by)

* figures courtesy Chris Olah compisod! €3 Tufts 108



LSTM: Ignore Gate i

JEAY /sigm)\

=fOc_+i0g

iv =0 (Wi-lhy—1,2¢] + b;)
C, = tanh(We - [hi—1,2¢) + be)

* figures courtesy Chris Olah compisodl €3 Tufts 109



LSTM: Block Gate g

hi~
W' ( t
hi_

\g/ \tanh/

l 1 .
¢t=fOc¢ 1 +i0g

LT "ﬁé Cy = fi*Cro1 + i * Cy

* figures courtesy Chris Olah compisod! €3 Tufts
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LSTM: Output Gate o

_ wt (b
| o) | sigm | hi_l

d=fod _+iog
h,ﬁ_ = o@tanh(cﬁ)

0Oy = (7(“",, [h[—lq;lff] -1- bu)
h: = o; * tanh (C})

* figures courtesy Chris Olah compisodl €3 Tufts
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Summary

- RNNs allow a lot of flexibility in architecture design

- Vanilla RNNs are simple but don’t work very well

- Common to use LSTM: their additive interactions improve
gradient flow

- Backward flow of gradients in RNN can explode or vanish.
Exploding is controlled with gradient clipping. Vanishing is
controlled with additive interactions (LSTM)

- Additional resource for RNNs and LSTMs for Deep NLP:
cs224d.stanford.edu

* Original slides borrowed from Andrej Karpathy n
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