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Lecture 9: 
Visualizing CNNs  

and 
Recurrent Neural Networks 

Tuesday February 28, 2017
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Announcements!

- HW #3 is out 

- Final Project proposals due this Thursday March 2

- Papers to read: Students should read all papers on the Schedule tab, and 
are encouraged to read as many papers as possible from the Papers tab.  

- Next paper: March 7 You Only Look Once: Unified, Real-Time Object 
Detection. If this paper seems too deep or confusing, look at Fast R-CNN, 
Faster R-CNN
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Python/Numpy of the Day 

• t-SNE (t-Distributed Stochastic 
Nearest Neighbor Embedding) 

• Scikit-Learn t-SNE 

• Examples of 2D Embedding 
Visualizations of MNIST 
dataset 

• Other Embedding functions 
in Scikit-Learn

3

http://scikit-learn.org/stable/modules/generated/sklearn.manifold.TSNE.html
http://scikit-learn.org/stable/auto_examples/manifold/plot_lle_digits.html#sphx-glr-auto-examples-manifold-plot-lle-digits-py
http://scikit-learn.org/stable/auto_examples/manifold/plot_manifold_sphere.html#sphx-glr-auto-examples-manifold-plot-manifold-sphere-py
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- How can we see what’s going on in a CNN? 
- Stuff we’ve already done: 

- Visualize the weights 
- Occlusion experiments — ex. Jason and Lisa’s AlexNet Occlusion Tests

Visualizing CNN Behavior
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- How can we see what’s going on in a CNN? 
- Straightforward stuff to try in the future:  
- Visualize the representation space (e.g. with t-SNE) 
- Human experiment comparisons

Visualizing CNN Behavior
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- How can we see what’s going on in a CNN? 
- More sophisticated approaches (HW #4)

Visualizing CNN Behavior

- Visualize patches that maximally activate neurons 
- Optimization over image approaches (optimization) 
- Deconv approaches (single backward pass)
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Deconv approaches -  
projecting backward from one neuron to see what is 
activating it

1. Feed image into net

Q: how can we compute the gradient of any arbitrary 
neuron in the network w.r.t. the image?
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Deconv approaches
1. Feed image into net
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Deconv approaches
1. Feed image into net

2. Pick a layer, set the gradient there to be all zero except for one 1 for 
some neuron of interest 
3. Backprop to image:
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Deconv approaches
1. Feed image into net

“Guided  
backpropagation:” 
only propagate 
positive gradients

2. Pick a layer, set the gradient there to be all zero except for one 1 for 
some neuron of interest 
3. Backprop to image:
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Deconv approaches
[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013] 
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] 
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]
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[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013] 
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] 
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

Backward pass for a ReLU (will be changed in Guided Backprop)

Deconv approaches
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[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013] 
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] 
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

Deconv approaches
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Visualization of patterns 
learned by the layer conv6 
(top) and layer conv9 
(bottom) of the network 
trained on ImageNet.  

Each row corresponds to 
one filter.  

The visualization using 
“guided backpropagation” is 
based on the top 10 image 
patches activating this filter 
taken from the ImageNet 
dataset. 

[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]
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[Visualizing and Understanding Convolutional Networks, Zeiler and Fergus 2013] 
[Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps, Simonyan et al., 2014] 
[Striving for Simplicity: The all convolutional net, Springenberg, Dosovitskiy, et al., 2015]

backprops 
to weights 
that were 
zero-d out 
by ReLu

Deconv approaches
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Visualizing arbitrary neurons along the way to the top...

Visualizing and Understanding Convolutional Networks 
Zeiler & Fergus, 2013 
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Visualizing arbitrary neurons along the way to the top...
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Visualizing 
arbitrary 
neurons along 
the way to the 
top...
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Q: can we find an image that maximizes 
some class score?

Optimization to Image
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Q: can we find an image that maximizes 
some class score?

score for class c (before Softmax)

Optimization to Image
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zero image

1. feed in 
zeros.

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image 

Optimization to Image
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zero image

1. feed in 
zeros.

2. set the gradient of the scores vector to be [0,0,....1,....,0], then backprop to image 
3. do a small “image update” 
4. forward the image through the network.  
5. go back to 2.

score for class c (before Softmax)

Optimization to Image
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1. Find images that maximize some class score: 

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 
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1. Find images that maximize some class score: 

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 
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2. Visualize the  
Data gradient: 

(note that the gradient on 
data has three channels. 
Here they visualize M, s.t.: 

(at each pixel take abs val, and max 
over channels) 

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 

M = ?
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2. Visualize the  
Data gradient: 

(note that the gradient on 
data has three channels. 
Here they visualize M, s.t.: 

(at each pixel take abs val, and max 
over channels) 

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 
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Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps 
Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 

- Use grabcut for 
segmentation 

- This 
optimization can 
be done for 
arbitrary 
neurons in the 
CNN
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Question: Given a CNN code, is it 
possible to reconstruct the original 
image?
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Understanding Deep Image Representations by Inverting Them 
[Mahendran and Vedaldi, 2014]

original image reconstructions 
from the 1000 
log probabilities 
for ImageNet 
(ILSVRC) 
classes

Find an image such that: 
- Its code is similar to a given code 
- It “looks natural” (image prior regularization)
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DeepDream  https://github.com/google/deepdream 

https://github.com/google/deepdream
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DeepDream:  set dx = x :)

“image update”

jitter regularizer
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DeepDream modifies the image in a way that “boosts” all activations, at any layer 

this creates a feedback loop: e.g. any slightly detected dog face will be made more 
and more dog like over time

inception_4c/output
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DeepDream modifies the image in a way that “boosts” all activations, at any layer

34

inception_4c/output
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inception_3b/5x5_reduce

DeepDream modifies the image in a way that “boosts” all activations, at any layer
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NeuralStyle
[ A Neural Algorithm of Artistic Style by Leon A. Gatys,  
Alexander S. Ecker, and Matthias Bethge, 2015] 
good implementation by Justin in Torch: 
https://github.com/jcjohnson/neural-style 

https://github.com/jcjohnson/neural-style


* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 37

We can pose an optimization over the input image 
to maximize any class score.  
That seems useful. 

Question: Can we use this to “fool” ConvNets?
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[Intriguing properties of neural networks, Szegedy et al., 2013] 

correct +distort ostrich correct +distort ostrich
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[Deep Neural Networks are Easily Fooled: High Confidence Predictions for Unrecognizable Images 
Nguyen, Yosinski, Clune, 2014] 

>99.6% 
confidences



* Original slides borrowed from Andrej Karpathy 
and Li Fei-Fei,  Stanford cs231n  comp150dl 40

These kinds of results were around even before ConvNets…
[Exploring the Representation Capabilities of the HOG Descriptor, Tatu et al., 2011]

Identical HOG represention
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EXPLAINING AND HARNESSING ADVERSARIAL EXAMPLES 
[Goodfellow, Shlens & Szegedy, 2014] 

“primary cause of neural networks’ vulnerability to adversarial 
perturbation is their linear nature“
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

Lets fool a binary linear classifier:

x

w

input example

weights
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

Lets fool a binary linear classifier:

x

w

input example

weights

class 1 score = dot product: 
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3 
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474 
i.e. the classifier is 95% certain that this is class 0 example.
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

? ? ? ? ? ? ? ? ? ?

Lets fool a binary linear classifier:

x

w

input example

weights

adversarial x

class 1 score = dot product: 
= -2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3 
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474 
i.e. the classifier is 95% certain that this is class 0 example.
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

Lets fool a binary linear classifier:

x

w

input example

weights

adversarial x

class 1 score before: 
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3 
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474 
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2 
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88 
i.e. we improved the class 1 probability from 5% to 88%
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2 -1 3 -2 2 2 1 -4 5 1

-1 -1 1 -1 1 -1 1 1 -1 1

1.5 -1.5 3.5 -2.5 2.5 1.5 1.5 -3.5 4.5 1.5

Lets fool a binary linear classifier:

x

w

input example

weights

adversarial x

This was only with 10 input 
dimensions. A 224x224 input 
image has 150,528. 

(It’s significantly easier with 
more numbers, need smaller 
nudge for each)

class 1 score before: 
-2 + 1 + 3 + 2 + 2 - 2 + 1 - 4 - 5 + 1 = -3 
=> probability of class 1 is 1/(1+e^(-(-3))) = 0.0474 
-1.5+1.5+3.5+2.5+2.5-1.5+1.5-3.5-4.5+1.5 = 2 
=> probability of class 1 is now 1/(1+e^(-(2))) = 0.88 
i.e. we improved the class 1 probability from 5% to 88%
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Andrej Karpathy Blog post: Breaking Linear Classifiers on ImageNet

Recall CIFAR-10 linear classifiers:

ImageNet classifiers:
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mix in a tiny bit of  
Goldfish classifier weights

+ =

100% Goldfish
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Recurrent Neural Networks
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Recurrent Networks offer a lot of flexibility:

Vanilla Neural Networks
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Recurrent Networks offer a lot of flexibility:

e.g. Image Captioning 
image -> sequence of words
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Recurrent Networks offer a lot of flexibility:

e.g. Sentiment Classification 
sequence of words -> sentiment
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Recurrent Networks offer a lot of flexibility:

e.g. Machine Translation 
seq of words -> seq of words
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Recurrent Networks offer a lot of flexibility:

e.g. Video classification on frame level
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Recurrent Networks

* figure courtesy Chris Olah
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new state old state
some function 
with parameters W

RNN - at each time step

* figure courtesy Chris Olah

Notice: the same 
function and the same 
set of parameters are 
used at every time step.
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(Vanilla) Recurrent Neural Network
The state consists of a single “hidden” vector h:
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Character-level 
language model 
example 

Vocabulary: 
[h,e,l,o] 

Example training 
sequence: 
“hello”
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Character-level 
language model 
example 

Vocabulary: 
[h,e,l,o] 

Example training 
sequence: 
“hello”
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Character-level 
language model 
example 

Vocabulary: 
[h,e,l,o] 

Example training 
sequence: 
“hello”
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Character-level 
language model 
example 

Vocabulary: 
[h,e,l,o] 

Example training 
sequence: 
“hello”
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min-char-rnn.py gist: 112 lines of Python 

(https://gist.github.com/karpathy/
d4dee566867f8291f086) 

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Data I/O

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Initializations

recall:

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Main loop

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Main loop

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Main loop

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Main loop

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Main loop

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist Loss function 
- forward pass (compute loss) 
- backward pass (compute param gradient)

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist

Softmax classifier

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist

recall:

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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min-char-rnn.py gist

https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
https://gist.github.com/karpathy/d4dee566867f8291f086
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train more

train more

train more

at first:
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open source textbook on algebraic geometry

Latex source
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Generated  
C code
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Recommended Reading:  
Visualizing and Understanding Recurrent Networks

[Visualizing and Understanding Recurrent Networks, Andrej Karpathy*, Justin Johnson*, Li Fei-Fei] 
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Explain Images with Multimodal Recurrent Neural Networks, Mao et al. 
Deep Visual-Semantic Alignments for Generating Image Descriptions, Karpathy and Fei-Fei 
Show and Tell: A Neural Image Caption Generator, Vinyals et al. 
Long-term Recurrent Convolutional Networks for Visual Recognition and Description, Donahue et al. 
Learning a Recurrent Visual Representation for Image Caption Generation, Chen and Zitnick 

Image Captioning
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Convolutional Neural Network

Recurrent Neural Network
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test image
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test image
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test image

X
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test image

x0 
<STA
RT>

<START>
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h0

x0 
<STA
RT>

y0

<START>

test image

before: 
h = tanh(Wxh * x + Whh * h) 

now: 
h = tanh(Wxh * x + Whh * h + Wih * v)

v

Wih
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h0

x0 
<STA
RT>

y0

<START>

test image

straw
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<END> token 
=> finish. 
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Image Sentence Datasets

Microsoft COCO 
[Tsung-Yi Lin et al. 2014] 
mscoco.org 

currently: 
~120K images 
~5 sentences each

http://mscoco.org
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Show Attend and Tell, Xu et al., 2015

Preview of fancier architectures 

RNN attends spatially to different parts of images while generating 
each word of the sentence:



103* slide courtesy Sean Bell



104comp150dl

“I grew up in France… I speak fluent French.”

* figures courtesy Chris Olah

Limitations of RNNs
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Long Short Term Memory Networks

* figures courtesy Chris Olah
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time

depth

RNN:

LSTM:
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LSTM: Cell State  
long running memory of the network

* figures courtesy Chris Olah
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LSTM: Forget Gate f

* figures courtesy Chris Olah
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LSTM: Ignore Gate i

* figures courtesy Chris Olah
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LSTM: Block Gate g

* figures courtesy Chris Olah
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LSTM: Output Gate o

* figures courtesy Chris Olah
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Summary 
- RNNs allow a lot of flexibility in architecture design 
- Vanilla RNNs are simple but don’t work very well 
- Common to use LSTM: their additive interactions improve 

gradient flow 
- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 
controlled with additive interactions (LSTM) 

- Additional resource for RNNs and LSTMs for Deep NLP: 
cs224d.stanford.edu 

http://cs224d.stanford.edu

